MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvinv Unicode version

Theorem grpinvinv 14846
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpinvinv.b  |-  B  =  ( Base `  G
)
grpinvinv.n  |-  N  =  ( inv g `  G )
Assertion
Ref Expression
grpinvinv  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )

Proof of Theorem grpinvinv
StepHypRef Expression
1 grpinvinv.b . . . . 5  |-  B  =  ( Base `  G
)
2 grpinvinv.n . . . . 5  |-  N  =  ( inv g `  G )
31, 2grpinvcl 14838 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
4 eqid 2435 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
5 eqid 2435 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
61, 4, 5, 2grprinv 14840 . . . 4  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( ( N `  X ) ( +g  `  G ) ( N `
 ( N `  X ) ) )  =  ( 0g `  G ) )
73, 6syldan 457 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X ) ( +g  `  G ) ( N `
 ( N `  X ) ) )  =  ( 0g `  G ) )
81, 4, 5, 2grplinv 14839 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X ) ( +g  `  G ) X )  =  ( 0g `  G ) )
97, 8eqtr4d 2470 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X ) ( +g  `  G ) ( N `
 ( N `  X ) ) )  =  ( ( N `
 X ) ( +g  `  G ) X ) )
10 simpl 444 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  G  e.  Grp )
111, 2grpinvcl 14838 . . . 4  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( N `  ( N `  X )
)  e.  B )
123, 11syldan 457 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  e.  B )
13 simpr 448 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  X  e.  B )
141, 4grplcan 14845 . . 3  |-  ( ( G  e.  Grp  /\  ( ( N `  ( N `  X ) )  e.  B  /\  X  e.  B  /\  ( N `  X )  e.  B ) )  ->  ( ( ( N `  X ) ( +g  `  G
) ( N `  ( N `  X ) ) )  =  ( ( N `  X
) ( +g  `  G
) X )  <->  ( N `  ( N `  X
) )  =  X ) )
1510, 12, 13, 3, 14syl13anc 1186 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( ( N `
 X ) ( +g  `  G ) ( N `  ( N `  X )
) )  =  ( ( N `  X
) ( +g  `  G
) X )  <->  ( N `  ( N `  X
) )  =  X ) )
169, 15mpbid 202 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   ` cfv 5445  (class class class)co 6072   Basecbs 13457   +g cplusg 13517   0gc0g 13711   Grpcgrp 14673   inv gcminusg 14674
This theorem is referenced by:  grpinv11  14848  grpinvnz  14850  grpsubinv  14852  grpinvsub  14859  grpsubeq0  14863  grpnpcan  14868  mulgneg  14896  mulgdir  14903  mulgass  14908  eqger  14978  frgpuptinv  15391  ablsub2inv  15423  mulgdi  15437  invghm  15441  rngm2neg  15695  unitinvinv  15768  unitnegcl  15774  irrednegb  15804  abvneg  15910  lspsnneg  16070  tgpconcomp  18130  islindf4  27223  baerlem5amN  32353  baerlem5bmN  32354  baerlem5abmN  32355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-riota 6540  df-0g 13715  df-mnd 14678  df-grp 14800  df-minusg 14801
  Copyright terms: Public domain W3C validator