MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinveu Unicode version

Theorem grpoinveu 20814
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinveu.1  |-  X  =  ran  G
grpinveu.2  |-  U  =  (GId `  G )
Assertion
Ref Expression
grpoinveu  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E! y  e.  X  (
y G A )  =  U )
Distinct variable groups:    y, A    y, G    y, U    y, X

Proof of Theorem grpoinveu
StepHypRef Expression
1 grpinveu.1 . . . . 5  |-  X  =  ran  G
2 grpinveu.2 . . . . 5  |-  U  =  (GId `  G )
31, 2grpoidinv2 20810 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
4 simpl 445 . . . . . 6  |-  ( ( ( y G A )  =  U  /\  ( A G y )  =  U )  -> 
( y G A )  =  U )
54reximi 2621 . . . . 5  |-  ( E. y  e.  X  ( ( y G A )  =  U  /\  ( A G y )  =  U )  ->  E. y  e.  X  ( y G A )  =  U )
65adantl 454 . . . 4  |-  ( ( ( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) )  ->  E. y  e.  X  ( y G A )  =  U )
73, 6syl 17 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E. y  e.  X  ( y G A )  =  U )
8 eqtr3 2275 . . . . . . . . . . . 12  |-  ( ( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  ( y G A )  =  ( z G A ) )
91grporcan 20813 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  (
y  e.  X  /\  z  e.  X  /\  A  e.  X )
)  ->  ( (
y G A )  =  ( z G A )  <->  y  =  z ) )
108, 9syl5ib 212 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  (
y  e.  X  /\  z  e.  X  /\  A  e.  X )
)  ->  ( (
( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) )
11103exp2 1174 . . . . . . . . . 10  |-  ( G  e.  GrpOp  ->  ( y  e.  X  ->  ( z  e.  X  ->  ( A  e.  X  ->  ( ( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) ) ) ) )
1211com24 83 . . . . . . . . 9  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  ( z  e.  X  ->  (
y  e.  X  -> 
( ( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) ) ) ) )
1312imp41 579 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  z  e.  X )  /\  y  e.  X )  ->  (
( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) )
1413an32s 782 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  y  e.  X )  /\  z  e.  X )  ->  (
( ( y G A )  =  U  /\  ( z G A )  =  U )  ->  y  =  z ) )
1514exp3a 427 . . . . . 6  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  y  e.  X )  /\  z  e.  X )  ->  (
( y G A )  =  U  -> 
( ( z G A )  =  U  ->  y  =  z ) ) )
1615ralrimdva 2604 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( (
y G A )  =  U  ->  A. z  e.  X  ( (
z G A )  =  U  ->  y  =  z ) ) )
1716ancld 538 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( (
y G A )  =  U  ->  (
( y G A )  =  U  /\  A. z  e.  X  ( ( z G A )  =  U  -> 
y  =  z ) ) ) )
1817reximdva 2626 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( E. y  e.  X  ( y G A )  =  U  ->  E. y  e.  X  ( ( y G A )  =  U  /\  A. z  e.  X  ( ( z G A )  =  U  ->  y  =  z ) ) ) )
197, 18mpd 16 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E. y  e.  X  ( (
y G A )  =  U  /\  A. z  e.  X  (
( z G A )  =  U  -> 
y  =  z ) ) )
20 oveq1 5764 . . . 4  |-  ( y  =  z  ->  (
y G A )  =  ( z G A ) )
2120eqeq1d 2264 . . 3  |-  ( y  =  z  ->  (
( y G A )  =  U  <->  ( z G A )  =  U ) )
2221reu8 2914 . 2  |-  ( E! y  e.  X  ( y G A )  =  U  <->  E. y  e.  X  ( (
y G A )  =  U  /\  A. z  e.  X  (
( z G A )  =  U  -> 
y  =  z ) ) )
2319, 22sylibr 205 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  E! y  e.  X  (
y G A )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2516   E.wrex 2517   E!wreu 2518   ran crn 4627   ` cfv 4638  (class class class)co 5757   GrpOpcgr 20778  GIdcgi 20779
This theorem is referenced by:  grpoinvcl  20818  grpoinv  20819
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-fo 4652  df-fv 4654  df-ov 5760  df-iota 6190  df-riota 6237  df-grpo 20783  df-gid 20784
  Copyright terms: Public domain W3C validator