MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvop Unicode version

Theorem grpoinvop 21677
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1  |-  X  =  ran  G
grpasscan1.2  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
grpoinvop  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  =  ( ( N `  B ) G ( N `  A ) ) )

Proof of Theorem grpoinvop
StepHypRef Expression
1 simp1 957 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  G  e.  GrpOp )
2 simp2 958 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
3 simp3 959 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
4 grpasscan1.1 . . . . . . 7  |-  X  =  ran  G
5 grpasscan1.2 . . . . . . 7  |-  N  =  ( inv `  G
)
64, 5grpoinvcl 21662 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( N `  B )  e.  X )
763adant2 976 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  B )  e.  X )
84, 5grpoinvcl 21662 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  X )
983adant3 977 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  A )  e.  X )
104grpocl 21636 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( N `  B )  e.  X  /\  ( N `  A )  e.  X )  ->  (
( N `  B
) G ( N `
 A ) )  e.  X )
111, 7, 9, 10syl3anc 1184 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  B
) G ( N `
 A ) )  e.  X )
124grpoass 21639 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  B ) G ( N `  A ) )  e.  X ) )  ->  ( ( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  ( A G ( B G ( ( N `
 B ) G ( N `  A
) ) ) ) )
131, 2, 3, 11, 12syl13anc 1186 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  ( A G ( B G ( ( N `  B
) G ( N `
 A ) ) ) ) )
14 eqid 2387 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
154, 14, 5grporinv 21665 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( B G ( N `  B ) )  =  (GId `  G )
)
16153adant2 976 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( B G ( N `  B ) )  =  (GId `  G )
)
1716oveq1d 6035 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( B G ( N `  B ) ) G ( N `
 A ) )  =  ( (GId `  G ) G ( N `  A ) ) )
184grpoass 21639 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  ( N `  B )  e.  X  /\  ( N `  A )  e.  X ) )  -> 
( ( B G ( N `  B
) ) G ( N `  A ) )  =  ( B G ( ( N `
 B ) G ( N `  A
) ) ) )
191, 3, 7, 9, 18syl13anc 1186 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( B G ( N `  B ) ) G ( N `
 A ) )  =  ( B G ( ( N `  B ) G ( N `  A ) ) ) )
204, 14grpolid 21655 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( N `  A )  e.  X )  ->  (
(GId `  G ) G ( N `  A ) )  =  ( N `  A
) )
218, 20syldan 457 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
(GId `  G ) G ( N `  A ) )  =  ( N `  A
) )
22213adant3 977 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
(GId `  G ) G ( N `  A ) )  =  ( N `  A
) )
2317, 19, 223eqtr3d 2427 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( B G ( ( N `
 B ) G ( N `  A
) ) )  =  ( N `  A
) )
2423oveq2d 6036 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( B G ( ( N `  B ) G ( N `  A ) ) ) )  =  ( A G ( N `  A ) ) )
254, 14, 5grporinv 21665 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G ( N `  A ) )  =  (GId `  G )
)
26253adant3 977 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( N `  A ) )  =  (GId `  G )
)
2713, 24, 263eqtrd 2423 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  (GId `  G
) )
284grpocl 21636 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
294, 14, 5grpoinvid1 21666 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A G B )  e.  X  /\  ( ( N `  B ) G ( N `  A ) )  e.  X )  ->  (
( N `  ( A G B ) )  =  ( ( N `
 B ) G ( N `  A
) )  <->  ( ( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  (GId
`  G ) ) )
301, 28, 11, 29syl3anc 1184 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G B ) )  =  ( ( N `
 B ) G ( N `  A
) )  <->  ( ( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  (GId
`  G ) ) )
3127, 30mpbird 224 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  =  ( ( N `  B ) G ( N `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1717   ran crn 4819   ` cfv 5394  (class class class)co 6020   GrpOpcgr 21622  GIdcgi 21623   invcgn 21624
This theorem is referenced by:  grpoinvdiv  21681  grpopnpcan2  21689  gxcom  21705  gxinv  21706  gxsuc  21708  gxdi  21732
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-riota 6485  df-grpo 21627  df-gid 21628  df-ginv 21629
  Copyright terms: Public domain W3C validator