MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruwun Structured version   Unicode version

Theorem gruwun 8688
Description: A nonempty Grothendieck's universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
gruwun  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  U  e. WUni )

Proof of Theorem gruwun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grutr 8668 . . 3  |-  ( U  e.  Univ  ->  Tr  U
)
21adantr 452 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  Tr  U )
3 simpr 448 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  U  =/=  (/) )
4 gruuni 8675 . . . . 5  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  U. x  e.  U )
54adantlr 696 . . . 4  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  x  e.  U )  ->  U. x  e.  U
)
6 grupw 8670 . . . . 5  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ~P x  e.  U )
76adantlr 696 . . . 4  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  x  e.  U )  ->  ~P x  e.  U
)
8 grupr 8672 . . . . . . 7  |-  ( ( U  e.  Univ  /\  x  e.  U  /\  y  e.  U )  ->  { x ,  y }  e.  U )
983expa 1153 . . . . . 6  |-  ( ( ( U  e.  Univ  /\  x  e.  U )  /\  y  e.  U
)  ->  { x ,  y }  e.  U )
109adantllr 700 . . . . 5  |-  ( ( ( ( U  e. 
Univ  /\  U  =/=  (/) )  /\  x  e.  U )  /\  y  e.  U
)  ->  { x ,  y }  e.  U )
1110ralrimiva 2789 . . . 4  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  x  e.  U )  ->  A. y  e.  U  { x ,  y }  e.  U )
125, 7, 113jca 1134 . . 3  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  x  e.  U )  ->  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) )
1312ralrimiva 2789 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) )
14 iswun 8579 . . 3  |-  ( U  e.  Univ  ->  ( U  e. WUni 
<->  ( Tr  U  /\  U  =/=  (/)  /\  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) ) )
1514adantr 452 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( U  e. WUni  <->  ( Tr  U  /\  U  =/=  (/)  /\  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) ) )
162, 3, 13, 15mpbir3and 1137 1  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  U  e. WUni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1725    =/= wne 2599   A.wral 2705   (/)c0 3628   ~Pcpw 3799   {cpr 3815   U.cuni 4015   Tr wtr 4302  WUnicwun 8575   Univcgru 8665
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-map 7020  df-wun 8577  df-gru 8666
  Copyright terms: Public domain W3C validator