MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3a Unicode version

Theorem gsumval3a 15189
Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3a.t  |-  ( ph  ->  W  e.  Fin )
gsumval3a.n  |-  ( ph  ->  W  =/=  (/) )
gsumval3a.w  |-  W  =  ( `' F "
( _V  \  {  .0.  } ) )
gsumval3a.i  |-  ( ph  ->  -.  A  e.  ran  ... )
Assertion
Ref Expression
gsumval3a  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
Distinct variable groups:    x, f,  .+    A, f, x    ph, f, x    x,  .0.    f, G, x   
x, V    B, f, x    f, F, x    f, W, x
Allowed substitution hints:    V( f)    .0. ( f)    Z( x, f)

Proof of Theorem gsumval3a
Dummy variables  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.b . . 3  |-  B  =  ( Base `  G
)
2 gsumval3.0 . . 3  |-  .0.  =  ( 0g `  G )
3 gsumval3.p . . 3  |-  .+  =  ( +g  `  G )
4 eqid 2283 . . 3  |-  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }  =  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }
5 gsumval3.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
61, 2, 3, 4gsumvallem2 14449 . . . . . . 7  |-  ( G  e.  Mnd  ->  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }  =  {  .0.  } )
75, 6syl 15 . . . . . 6  |-  ( ph  ->  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) }  =  {  .0.  } )
87difeq2d 3294 . . . . 5  |-  ( ph  ->  ( _V  \  {
z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } )  =  ( _V  \  {  .0.  } ) )
98imaeq2d 5012 . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  {
z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } ) )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
10 gsumval3a.w . . . 4  |-  W  =  ( `' F "
( _V  \  {  .0.  } ) )
119, 10syl6reqr 2334 . . 3  |-  ( ph  ->  W  =  ( `' F " ( _V 
\  { z  e.  B  |  A. y  e.  B  ( (
z  .+  y )  =  y  /\  (
y  .+  z )  =  y ) } ) ) )
12 gsumval3.a . . 3  |-  ( ph  ->  A  e.  V )
13 gsumval3.f . . 3  |-  ( ph  ->  F : A --> B )
141, 2, 3, 4, 11, 5, 12, 13gsumval 14452 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } ,  .0.  ,  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m ( 
.+  ,  F ) `
 n ) ) ) ,  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) ) ) )
15 gsumval3a.n . . . 4  |-  ( ph  ->  W  =/=  (/) )
167sseq2d 3206 . . . . . 6  |-  ( ph  ->  ( ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) }  <->  ran  F  C_  {  .0.  } ) )
17 ffn 5389 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  F  Fn  A )
1813, 17syl 15 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  A )
1918adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  F  Fn  A )
20 simpr 447 . . . . . . . . . 10  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  ran  F  C_  {  .0.  } )
21 df-f 5259 . . . . . . . . . 10  |-  ( F : A --> {  .0.  }  <-> 
( F  Fn  A  /\  ran  F  C_  {  .0.  } ) )
2219, 20, 21sylanbrc 645 . . . . . . . . 9  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  F : A --> {  .0.  } )
23 disjdif 3526 . . . . . . . . 9  |-  ( {  .0.  }  i^i  ( _V  \  {  .0.  }
) )  =  (/)
24 fimacnvdisj 5419 . . . . . . . . 9  |-  ( ( F : A --> {  .0.  }  /\  ( {  .0.  }  i^i  ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( `' F " ( _V 
\  {  .0.  }
) )  =  (/) )
2522, 23, 24sylancl 643 . . . . . . . 8  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  -> 
( `' F "
( _V  \  {  .0.  } ) )  =  (/) )
2610, 25syl5eq 2327 . . . . . . 7  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  W  =  (/) )
2726ex 423 . . . . . 6  |-  ( ph  ->  ( ran  F  C_  {  .0.  }  ->  W  =  (/) ) )
2816, 27sylbid 206 . . . . 5  |-  ( ph  ->  ( ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) }  ->  W  =  (/) ) )
2928necon3ad 2482 . . . 4  |-  ( ph  ->  ( W  =/=  (/)  ->  -.  ran  F  C_  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) } ) )
3015, 29mpd 14 . . 3  |-  ( ph  ->  -.  ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } )
31 iffalse 3572 . . 3  |-  ( -. 
ran  F  C_  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }  ->  if ( ran  F  C_  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) } ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq  m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )  =  if ( A  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )
3230, 31syl 15 . 2  |-  ( ph  ->  if ( ran  F  C_ 
{ z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } ,  .0.  ,  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m ( 
.+  ,  F ) `
 n ) ) ) ,  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) ) )  =  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq  m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )
33 gsumval3a.i . . 3  |-  ( ph  ->  -.  A  e.  ran  ... )
34 iffalse 3572 . . 3  |-  ( -.  A  e.  ran  ...  ->  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m ( 
.+  ,  F ) `
 n ) ) ) ,  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) )  =  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) )
3533, 34syl 15 . 2  |-  ( ph  ->  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m ( 
.+  ,  F ) `
 n ) ) ) ,  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) )  =  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) )
3614, 32, 353eqtrd 2319 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   ifcif 3565   {csn 3640   `'ccnv 4688   ran crn 4690   "cima 4692    o. ccom 4693   iotacio 5217    Fn wfn 5250   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   Fincfn 6863   1c1 8738   ZZ>=cuz 10230   ...cfz 10782    seq cseq 11046   #chash 11337   Basecbs 13148   +g cplusg 13208   0gc0g 13400    gsumg cgsu 13401   Mndcmnd 14361  Cntzccntz 14791
This theorem is referenced by:  gsumval3  15191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-seq 11047  df-0g 13404  df-gsum 13405  df-mnd 14367
  Copyright terms: Public domain W3C validator