MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumvallem1 Unicode version

Theorem gsumvallem1 14444
Description: Lemma for properties of the set of identities of  G. Either  G has no identities, and  O  =  (/), or it has one and this identity is unique and identified by the 
0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumvallem1.b  |-  B  =  ( Base `  G
)
gsumvallem1.z  |-  .0.  =  ( 0g `  G )
gsumvallem1.p  |-  .+  =  ( +g  `  G )
gsumvallem1.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
Assertion
Ref Expression
gsumvallem1  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Distinct variable groups:    x, y, B    x, G, y    x,  .+ , y    x, V    x,  .0. , y
Allowed substitution hints:    O( x, y)    V( y)

Proof of Theorem gsumvallem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 gsumvallem1.o . 2  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
2 simpr 447 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
3 gsumvallem1.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
4 gsumvallem1.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
5 gsumvallem1.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
6 oveq1 5827 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
z  .+  y )  =  ( x  .+  y ) )
76eqeq1d 2292 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( z  .+  y
)  =  y  <->  ( x  .+  y )  =  y ) )
8 oveq2 5828 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
y  .+  z )  =  ( y  .+  x ) )
98eqeq1d 2292 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( y  .+  z
)  =  y  <->  ( y  .+  x )  =  y ) )
107, 9anbi12d 691 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y )  <->  ( ( x 
.+  y )  =  y  /\  ( y 
.+  x )  =  y ) ) )
1110ralbidv 2564 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y )  <->  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
1211rspcev 2885 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) )  ->  E. z  e.  B  A. y  e.  B  ( (
z  .+  y )  =  y  /\  (
y  .+  z )  =  y ) )
1312adantl 452 . . . . . . . . 9  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  E. z  e.  B  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) )
143, 4, 5, 13ismgmid 14383 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( ( x  e.  B  /\  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) )  <-> 
.0.  =  x ) )
152, 14mpbid 201 . . . . . . 7  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  .0.  =  x )
1615eqcomd 2289 . . . . . 6  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  =  .0.  )
17 elsn 3656 . . . . . 6  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
1816, 17sylibr 203 . . . . 5  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  e.  {  .0.  } )
1918expr 598 . . . 4  |-  ( ( G  e.  V  /\  x  e.  B )  ->  ( A. y  e.  B  ( ( x 
.+  y )  =  y  /\  ( y 
.+  x )  =  y )  ->  x  e.  {  .0.  } ) )
2019ralrimiva 2627 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  ( A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y )  ->  x  e.  {  .0.  } ) )
21 rabss 3251 . . 3  |-  ( { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  C_  {  .0.  }  <->  A. x  e.  B  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  ->  x  e.  {  .0.  } ) )
2220, 21sylibr 203 . 2  |-  ( G  e.  V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  {  .0.  } )
231, 22syl5eqss 3223 1  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544   E.wrex 2545   {crab 2548    C_ wss 3153   {csn 3641   ` cfv 5221  (class class class)co 5820   Basecbs 13144   +g cplusg 13204   0gc0g 13396
This theorem is referenced by:  gsumvallem2  14445  gsumress  14450  gsumval2  14456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fv 5229  df-ov 5823  df-iota 6253  df-riota 6300  df-0g 13400
  Copyright terms: Public domain W3C validator