MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumvallem1 Unicode version

Theorem gsumvallem1 14658
Description: Lemma for properties of the set of identities of  G. Either  G has no identities, and  O  =  (/), or it has one and this identity is unique and identified by the 
0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumvallem1.b  |-  B  =  ( Base `  G
)
gsumvallem1.z  |-  .0.  =  ( 0g `  G )
gsumvallem1.p  |-  .+  =  ( +g  `  G )
gsumvallem1.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
Assertion
Ref Expression
gsumvallem1  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Distinct variable groups:    x, y, B    x, G, y    x,  .+ , y    x, V    x,  .0. , y
Allowed substitution hints:    O( x, y)    V( y)

Proof of Theorem gsumvallem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 gsumvallem1.o . 2  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
2 simpr 447 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
3 gsumvallem1.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
4 gsumvallem1.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
5 gsumvallem1.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
6 oveq1 5988 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
z  .+  y )  =  ( x  .+  y ) )
76eqeq1d 2374 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( z  .+  y
)  =  y  <->  ( x  .+  y )  =  y ) )
8 oveq2 5989 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
y  .+  z )  =  ( y  .+  x ) )
98eqeq1d 2374 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( y  .+  z
)  =  y  <->  ( y  .+  x )  =  y ) )
107, 9anbi12d 691 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y )  <->  ( ( x 
.+  y )  =  y  /\  ( y 
.+  x )  =  y ) ) )
1110ralbidv 2648 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y )  <->  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
1211rspcev 2969 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) )  ->  E. z  e.  B  A. y  e.  B  ( (
z  .+  y )  =  y  /\  (
y  .+  z )  =  y ) )
1312adantl 452 . . . . . . . . 9  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  E. z  e.  B  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) )
143, 4, 5, 13ismgmid 14597 . . . . . . . 8  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  -> 
( ( x  e.  B  /\  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) )  <-> 
.0.  =  x ) )
152, 14mpbid 201 . . . . . . 7  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  .0.  =  x )
1615eqcomd 2371 . . . . . 6  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  =  .0.  )
17 elsn 3744 . . . . . 6  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
1816, 17sylibr 203 . . . . 5  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )  ->  x  e.  {  .0.  } )
1918expr 598 . . . 4  |-  ( ( G  e.  V  /\  x  e.  B )  ->  ( A. y  e.  B  ( ( x 
.+  y )  =  y  /\  ( y 
.+  x )  =  y )  ->  x  e.  {  .0.  } ) )
2019ralrimiva 2711 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  ( A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y )  ->  x  e.  {  .0.  } ) )
21 rabss 3336 . . 3  |-  ( { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  C_  {  .0.  }  <->  A. x  e.  B  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  ->  x  e.  {  .0.  } ) )
2220, 21sylibr 203 . 2  |-  ( G  e.  V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  {  .0.  } )
231, 22syl5eqss 3308 1  |-  ( G  e.  V  ->  O  C_ 
{  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629   {crab 2632    C_ wss 3238   {csn 3729   ` cfv 5358  (class class class)co 5981   Basecbs 13356   +g cplusg 13416   0gc0g 13610
This theorem is referenced by:  gsumvallem2  14659  gsumress  14664  gsumval2  14670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-iota 5322  df-fun 5360  df-fv 5366  df-ov 5984  df-riota 6446  df-0g 13614
  Copyright terms: Public domain W3C validator