Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumvsmul Structured version   Unicode version

Theorem gsumvsmul 26857
Description: Pull a scalar multiplication out of a sum of vectors. EDITORIAL: properly generalizes gsummulc2 15752, since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
gsumvsmul.b  |-  B  =  ( Base `  R
)
gsumvsmul.s  |-  S  =  (Scalar `  R )
gsumvsmul.k  |-  K  =  ( Base `  S
)
gsumvsmul.z  |-  .0.  =  ( 0g `  R )
gsumvsmul.p  |-  .+  =  ( +g  `  R )
gsumvsmul.t  |-  .x.  =  ( .s `  R )
gsumvsmul.r  |-  ( ph  ->  R  e.  LMod )
gsumvsmul.a  |-  ( ph  ->  A  e.  V )
gsumvsmul.x  |-  ( ph  ->  X  e.  K )
gsumvsmul.y  |-  ( (
ph  /\  k  e.  A )  ->  Y  e.  B )
gsumvsmul.n  |-  ( ph  ->  ( `' ( k  e.  A  |->  Y )
" ( _V  \  {  .0.  } ) )  e.  Fin )
Assertion
Ref Expression
gsumvsmul  |-  ( ph  ->  ( R  gsumg  ( k  e.  A  |->  ( X  .x.  Y
) ) )  =  ( X  .x.  ( R  gsumg  ( k  e.  A  |->  Y ) ) ) )
Distinct variable groups:    A, k    B, k    ph, k    .x. , k    S, k    k, K    k, X    .0. , k
Allowed substitution hints:    .+ ( k)    R( k)    V( k)    Y( k)

Proof of Theorem gsumvsmul
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 gsumvsmul.b . 2  |-  B  =  ( Base `  R
)
2 gsumvsmul.z . 2  |-  .0.  =  ( 0g `  R )
3 gsumvsmul.r . . 3  |-  ( ph  ->  R  e.  LMod )
4 lmodcmn 16030 . . 3  |-  ( R  e.  LMod  ->  R  e. CMnd
)
53, 4syl 16 . 2  |-  ( ph  ->  R  e. CMnd )
6 cmnmnd 15465 . . 3  |-  ( R  e. CMnd  ->  R  e.  Mnd )
75, 6syl 16 . 2  |-  ( ph  ->  R  e.  Mnd )
8 gsumvsmul.a . 2  |-  ( ph  ->  A  e.  V )
9 gsumvsmul.x . . . 4  |-  ( ph  ->  X  e.  K )
10 gsumvsmul.s . . . . 5  |-  S  =  (Scalar `  R )
11 gsumvsmul.t . . . . 5  |-  .x.  =  ( .s `  R )
12 gsumvsmul.k . . . . 5  |-  K  =  ( Base `  S
)
131, 10, 11, 12lmodvsghm 16043 . . . 4  |-  ( ( R  e.  LMod  /\  X  e.  K )  ->  (
y  e.  B  |->  ( X  .x.  y ) )  e.  ( R 
GrpHom  R ) )
143, 9, 13syl2anc 644 . . 3  |-  ( ph  ->  ( y  e.  B  |->  ( X  .x.  y
) )  e.  ( R  GrpHom  R ) )
15 ghmmhm 15054 . . 3  |-  ( ( y  e.  B  |->  ( X  .x.  y ) )  e.  ( R 
GrpHom  R )  ->  (
y  e.  B  |->  ( X  .x.  y ) )  e.  ( R MndHom  R ) )
1614, 15syl 16 . 2  |-  ( ph  ->  ( y  e.  B  |->  ( X  .x.  y
) )  e.  ( R MndHom  R ) )
17 gsumvsmul.y . 2  |-  ( (
ph  /\  k  e.  A )  ->  Y  e.  B )
18 gsumvsmul.n . 2  |-  ( ph  ->  ( `' ( k  e.  A  |->  Y )
" ( _V  \  {  .0.  } ) )  e.  Fin )
19 oveq2 6125 . 2  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
20 oveq2 6125 . 2  |-  ( y  =  ( R  gsumg  ( k  e.  A  |->  Y ) )  ->  ( X  .x.  y )  =  ( X  .x.  ( R 
gsumg  ( k  e.  A  |->  Y ) ) ) )
211, 2, 5, 7, 8, 16, 17, 18, 19, 20gsummhm2 15573 1  |-  ( ph  ->  ( R  gsumg  ( k  e.  A  |->  ( X  .x.  Y
) ) )  =  ( X  .x.  ( R  gsumg  ( k  e.  A  |->  Y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1654    e. wcel 1728   _Vcvv 2965    \ cdif 3306   {csn 3843    e. cmpt 4297   `'ccnv 4912   "cima 4916   ` cfv 5489  (class class class)co 6117   Fincfn 7145   Basecbs 13507   +g cplusg 13567  Scalarcsca 13570   .scvsca 13571   0gc0g 13761    gsumg cgsu 13762   Mndcmnd 14722   MndHom cmhm 14774    GrpHom cghm 15041  CMndccmn 15450   LModclmod 15988
This theorem is referenced by:  frlmup1  27339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-cnex 9084  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-pre-mulgt0 9105
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rmo 2720  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-int 4080  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-se 4577  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-isom 5498  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-riota 6585  df-recs 6669  df-rdg 6704  df-1o 6760  df-oadd 6764  df-er 6941  df-map 7056  df-en 7146  df-dom 7147  df-sdom 7148  df-fin 7149  df-oi 7515  df-card 7864  df-pnf 9160  df-mnf 9161  df-xr 9162  df-ltxr 9163  df-le 9164  df-sub 9331  df-neg 9332  df-nn 10039  df-2 10096  df-n0 10260  df-z 10321  df-uz 10527  df-fz 11082  df-fzo 11174  df-seq 11362  df-hash 11657  df-ndx 13510  df-slot 13511  df-base 13512  df-sets 13513  df-plusg 13580  df-0g 13765  df-gsum 13766  df-mnd 14728  df-mhm 14776  df-grp 14850  df-minusg 14851  df-ghm 15042  df-cntz 15154  df-cmn 15452  df-abl 15453  df-mgp 15687  df-rng 15701  df-ur 15703  df-lmod 15990
  Copyright terms: Public domain W3C validator