MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzsplit Unicode version

Theorem gsumzsplit 15456
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
gsumzsplit.b  |-  B  =  ( Base `  G
)
gsumzsplit.0  |-  .0.  =  ( 0g `  G )
gsumzsplit.p  |-  .+  =  ( +g  `  G )
gsumzsplit.z  |-  Z  =  (Cntz `  G )
gsumzsplit.g  |-  ( ph  ->  G  e.  Mnd )
gsumzsplit.a  |-  ( ph  ->  A  e.  V )
gsumzsplit.f  |-  ( ph  ->  F : A --> B )
gsumzsplit.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzsplit.w  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
gsumzsplit.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
gsumzsplit.u  |-  ( ph  ->  A  =  ( C  u.  D ) )
Assertion
Ref Expression
gsumzsplit  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  C ) )  .+  ( G 
gsumg  ( F  |`  D ) ) ) )

Proof of Theorem gsumzsplit
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 gsumzsplit.b . . 3  |-  B  =  ( Base `  G
)
2 gsumzsplit.0 . . 3  |-  .0.  =  ( 0g `  G )
3 gsumzsplit.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumzsplit.z . . 3  |-  Z  =  (Cntz `  G )
5 gsumzsplit.g . . 3  |-  ( ph  ->  G  e.  Mnd )
6 gsumzsplit.a . . 3  |-  ( ph  ->  A  e.  V )
7 gsumzsplit.w . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
8 gsumzsplit.f . . . . . . . 8  |-  ( ph  ->  F : A --> B )
9 ssid 3310 . . . . . . . . 9  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
109a1i 11 . . . . . . . 8  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
118, 10suppssr 5803 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F `  k )  =  .0.  )
1211ifeq1d 3696 . . . . . 6  |-  ( (
ph  /\  k  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  =  if ( k  e.  C ,  .0.  ,  .0.  ) )
13 ifid 3714 . . . . . 6  |-  if ( k  e.  C ,  .0.  ,  .0.  )  =  .0.
1412, 13syl6eq 2435 . . . . 5  |-  ( (
ph  /\  k  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  =  .0.  )
1514suppss2 6239 . . . 4  |-  ( ph  ->  ( `' ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
16 ssfi 7265 . . . 4  |-  ( ( ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) ) "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )  -> 
( `' ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
177, 15, 16syl2anc 643 . . 3  |-  ( ph  ->  ( `' ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
1811ifeq1d 3696 . . . . . 6  |-  ( (
ph  /\  k  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  =  if ( k  e.  D ,  .0.  ,  .0.  ) )
19 ifid 3714 . . . . . 6  |-  if ( k  e.  D ,  .0.  ,  .0.  )  =  .0.
2018, 19syl6eq 2435 . . . . 5  |-  ( (
ph  /\  k  e.  ( A  \  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  =  .0.  )
2120suppss2 6239 . . . 4  |-  ( ph  ->  ( `' ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
22 ssfi 7265 . . . 4  |-  ( ( ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) ) "
( _V  \  {  .0.  } ) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )  -> 
( `' ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
237, 21, 22syl2anc 643 . . 3  |-  ( ph  ->  ( `' ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
241submacs 14692 . . . . 5  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
25 acsmre 13804 . . . . 5  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
265, 24, 253syl 19 . . . 4  |-  ( ph  ->  (SubMnd `  G )  e.  (Moore `  B )
)
27 frn 5537 . . . . 5  |-  ( F : A --> B  ->  ran  F  C_  B )
288, 27syl 16 . . . 4  |-  ( ph  ->  ran  F  C_  B
)
29 eqid 2387 . . . . 5  |-  (mrCls `  (SubMnd `  G ) )  =  (mrCls `  (SubMnd `  G ) )
3029mrccl 13763 . . . 4  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  ran  F  C_  B
)  ->  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  e.  (SubMnd `  G
) )
3126, 28, 30syl2anc 643 . . 3  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  e.  (SubMnd `  G ) )
32 gsumzsplit.c . . . . 5  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
33 eqid 2387 . . . . . 6  |-  ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  =  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
344, 29, 33cntzspan 15387 . . . . 5  |-  ( ( G  e.  Mnd  /\  ran  F  C_  ( Z `  ran  F ) )  ->  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd )
355, 32, 34syl2anc 643 . . . 4  |-  ( ph  ->  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  e. CMnd )
3633, 4submcmn2 15385 . . . . 5  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  ran  F )  e.  (SubMnd `  G )  ->  (
( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  e. CMnd  <->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  C_  ( Z `  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
3731, 36syl 16 . . . 4  |-  ( ph  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) 
C_  ( Z `  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
3835, 37mpbid 202 . . 3  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  C_  ( Z `  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) ) )
3926, 29, 28mrcssidd 13777 . . . . . . 7  |-  ( ph  ->  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )
4039adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ran  F 
C_  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
41 ffn 5531 . . . . . . . 8  |-  ( F : A --> B  ->  F  Fn  A )
428, 41syl 16 . . . . . . 7  |-  ( ph  ->  F  Fn  A )
43 fnfvelrn 5806 . . . . . . 7  |-  ( ( F  Fn  A  /\  k  e.  A )  ->  ( F `  k
)  e.  ran  F
)
4442, 43sylan 458 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  ran  F )
4540, 44sseldd 3292 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
462subm0cl 14679 . . . . . . 7  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  ran  F )  e.  (SubMnd `  G )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
4731, 46syl 16 . . . . . 6  |-  ( ph  ->  .0.  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )
4847adantr 452 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
49 ifcl 3718 . . . . 5  |-  ( ( ( F `  k
)  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  .0.  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )
5045, 48, 49syl2anc 643 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )
51 eqid 2387 . . . 4  |-  ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  .0.  )
)  =  ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  .0.  )
)
5250, 51fmptd 5832 . . 3  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) ) : A --> ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
53 ifcl 3718 . . . . 5  |-  ( ( ( F `  k
)  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  .0.  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )
5445, 48, 53syl2anc 643 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )
55 eqid 2387 . . . 4  |-  ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
)  =  ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
)
5654, 55fmptd 5832 . . 3  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) ) : A --> ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
571, 2, 3, 4, 5, 6, 17, 23, 31, 38, 52, 56gsumzadd 15454 . 2  |-  ( ph  ->  ( G  gsumg  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) )  o F  .+  (
k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) ) )  =  ( ( G 
gsumg  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) ) ) 
.+  ( G  gsumg  ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
) ) ) )
588feqmptd 5718 . . . . 5  |-  ( ph  ->  F  =  ( k  e.  A  |->  ( F `
 k ) ) )
59 iftrue 3688 . . . . . . . . . 10  |-  ( k  e.  C  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  =  ( F `  k ) )
6059adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  =  ( F `  k ) )
61 gsumzsplit.i . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
62 noel 3575 . . . . . . . . . . . . . . . 16  |-  -.  k  e.  (/)
63 eleq2 2448 . . . . . . . . . . . . . . . 16  |-  ( ( C  i^i  D )  =  (/)  ->  ( k  e.  ( C  i^i  D )  <->  k  e.  (/) ) )
6462, 63mtbiri 295 . . . . . . . . . . . . . . 15  |-  ( ( C  i^i  D )  =  (/)  ->  -.  k  e.  ( C  i^i  D
) )
6561, 64syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  k  e.  ( C  i^i  D ) )
6665adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  ( C  i^i  D ) )
67 elin 3473 . . . . . . . . . . . . 13  |-  ( k  e.  ( C  i^i  D )  <->  ( k  e.  C  /\  k  e.  D ) )
6866, 67sylnib 296 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  -.  ( k  e.  C  /\  k  e.  D
) )
69 imnan 412 . . . . . . . . . . . 12  |-  ( ( k  e.  C  ->  -.  k  e.  D
)  <->  -.  ( k  e.  C  /\  k  e.  D ) )
7068, 69sylibr 204 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
k  e.  C  ->  -.  k  e.  D
) )
7170imp 419 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  -.  k  e.  D )
72 iffalse 3689 . . . . . . . . . 10  |-  ( -.  k  e.  D  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  =  .0.  )
7371, 72syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  =  .0.  )
7460, 73oveq12d 6038 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  .0.  )  .+  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) )  =  ( ( F `
 k )  .+  .0.  ) )
758ffvelrnda 5809 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  B )
761, 3, 2mndrid 14644 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  ( F `  k )  e.  B )  -> 
( ( F `  k )  .+  .0.  )  =  ( F `  k ) )
775, 76sylan 458 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  k )  e.  B
)  ->  ( ( F `  k )  .+  .0.  )  =  ( F `  k ) )
7875, 77syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)  .+  .0.  )  =  ( F `  k ) )
7978adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  (
( F `  k
)  .+  .0.  )  =  ( F `  k ) )
8074, 79eqtrd 2419 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  .0.  )  .+  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) )  =  ( F `  k ) )
8170con2d 109 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
k  e.  D  ->  -.  k  e.  C
) )
8281imp 419 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  -.  k  e.  C )
83 iffalse 3689 . . . . . . . . . 10  |-  ( -.  k  e.  C  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  =  .0.  )
8482, 83syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  =  .0.  )
85 iftrue 3688 . . . . . . . . . 10  |-  ( k  e.  D  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  =  ( F `  k ) )
8685adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  =  ( F `  k ) )
8784, 86oveq12d 6038 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  .0.  )  .+  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) )  =  (  .0.  .+  ( F `  k ) ) )
881, 3, 2mndlid 14643 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  ( F `  k )  e.  B )  -> 
(  .0.  .+  ( F `  k )
)  =  ( F `
 k ) )
895, 88sylan 458 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  k )  e.  B
)  ->  (  .0.  .+  ( F `  k
) )  =  ( F `  k ) )
9075, 89syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  (  .0.  .+  ( F `  k ) )  =  ( F `  k
) )
9190adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  (  .0.  .+  ( F `  k ) )  =  ( F `  k
) )
9287, 91eqtrd 2419 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  .0.  )  .+  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) )  =  ( F `  k ) )
93 gsumzsplit.u . . . . . . . . . 10  |-  ( ph  ->  A  =  ( C  u.  D ) )
9493eleq2d 2454 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  <->  k  e.  ( C  u.  D ) ) )
95 elun 3431 . . . . . . . . 9  |-  ( k  e.  ( C  u.  D )  <->  ( k  e.  C  \/  k  e.  D ) )
9694, 95syl6bb 253 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  <->  ( k  e.  C  \/  k  e.  D )
) )
9796biimpa 471 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  (
k  e.  C  \/  k  e.  D )
)
9880, 92, 97mpjaodan 762 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  .0.  )  .+  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) )  =  ( F `  k ) )
9998mpteq2dva 4236 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  ( if ( k  e.  C ,  ( F `  k ) ,  .0.  )  .+  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) )  =  ( k  e.  A  |->  ( F `  k
) ) )
10058, 99eqtr4d 2422 . . . 4  |-  ( ph  ->  F  =  ( k  e.  A  |->  ( if ( k  e.  C ,  ( F `  k ) ,  .0.  )  .+  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) ) )
1011, 2mndidcl 14641 . . . . . . . 8  |-  ( G  e.  Mnd  ->  .0.  e.  B )
1025, 101syl 16 . . . . . . 7  |-  ( ph  ->  .0.  e.  B )
103102adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  .0.  e.  B )
104 ifcl 3718 . . . . . 6  |-  ( ( ( F `  k
)  e.  B  /\  .0.  e.  B )  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  e.  B )
10575, 103, 104syl2anc 643 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  C ,  ( F `  k ) ,  .0.  )  e.  B )
106 ifcl 3718 . . . . . 6  |-  ( ( ( F `  k
)  e.  B  /\  .0.  e.  B )  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  e.  B )
10775, 103, 106syl2anc 643 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  D ,  ( F `  k ) ,  .0.  )  e.  B )
108 eqidd 2388 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) )  =  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) ) )
109 eqidd 2388 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) )  =  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) ) )
1106, 105, 107, 108, 109offval2 6261 . . . 4  |-  ( ph  ->  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) )  o F  .+  (
k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) )  =  ( k  e.  A  |->  ( if ( k  e.  C ,  ( F `  k ) ,  .0.  )  .+  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) ) )
111100, 110eqtr4d 2422 . . 3  |-  ( ph  ->  F  =  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) )  o F 
.+  ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) ) )
112111oveq2d 6036 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) )  o F  .+  (
k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) ) ) )
11358reseq1d 5085 . . . . . 6  |-  ( ph  ->  ( F  |`  C )  =  ( ( k  e.  A  |->  ( F `
 k ) )  |`  C ) )
114 ssun1 3453 . . . . . . . 8  |-  C  C_  ( C  u.  D
)
115114, 93syl5sseqr 3340 . . . . . . 7  |-  ( ph  ->  C  C_  A )
11659mpteq2ia 4232 . . . . . . . 8  |-  ( k  e.  C  |->  if ( k  e.  C , 
( F `  k
) ,  .0.  )
)  =  ( k  e.  C  |->  ( F `
 k ) )
117 resmpt 5131 . . . . . . . 8  |-  ( C 
C_  A  ->  (
( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) )  |`  C )  =  ( k  e.  C  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) ) )
118 resmpt 5131 . . . . . . . 8  |-  ( C 
C_  A  ->  (
( k  e.  A  |->  ( F `  k
) )  |`  C )  =  ( k  e.  C  |->  ( F `  k ) ) )
119116, 117, 1183eqtr4a 2445 . . . . . . 7  |-  ( C 
C_  A  ->  (
( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) )  |`  C )  =  ( ( k  e.  A  |->  ( F `  k
) )  |`  C ) )
120115, 119syl 16 . . . . . 6  |-  ( ph  ->  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) )  |`  C )  =  ( ( k  e.  A  |->  ( F `  k
) )  |`  C ) )
121113, 120eqtr4d 2422 . . . . 5  |-  ( ph  ->  ( F  |`  C )  =  ( ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  .0.  )
)  |`  C ) )
122121oveq2d 6036 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  |`  C ) )  =  ( G 
gsumg  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) )  |`  C ) ) )
123105, 51fmptd 5832 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) ) : A --> B )
124 frn 5537 . . . . . . 7  |-  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) ) : A --> ( (mrCls `  (SubMnd `  G
) ) `  ran  F )  ->  ran  ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  .0.  )
)  C_  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )
12552, 124syl 16 . . . . . 6  |-  ( ph  ->  ran  ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) ) 
C_  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
1264cntzidss 15063 . . . . . 6  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  C_  ( Z `  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  /\  ran  (
k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) )  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  ran  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) )  C_  ( Z `  ran  (
k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) ) ) )
12738, 125, 126syl2anc 643 . . . . 5  |-  ( ph  ->  ran  ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) ) 
C_  ( Z `  ran  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) ) ) )
128 eldifn 3413 . . . . . . . 8  |-  ( k  e.  ( A  \  C )  ->  -.  k  e.  C )
129128adantl 453 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  \  C ) )  ->  -.  k  e.  C )
130129, 83syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  ( A  \  C ) )  ->  if (
k  e.  C , 
( F `  k
) ,  .0.  )  =  .0.  )
131130suppss2 6239 . . . . 5  |-  ( ph  ->  ( `' ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  C_  C
)
1321, 2, 4, 5, 6, 123, 127, 131, 17gsumzres 15444 . . . 4  |-  ( ph  ->  ( G  gsumg  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  .0.  ) )  |`  C ) )  =  ( G  gsumg  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) ) ) )
133122, 132eqtrd 2419 . . 3  |-  ( ph  ->  ( G  gsumg  ( F  |`  C ) )  =  ( G 
gsumg  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) ) ) )
13458reseq1d 5085 . . . . . 6  |-  ( ph  ->  ( F  |`  D )  =  ( ( k  e.  A  |->  ( F `
 k ) )  |`  D ) )
135 ssun2 3454 . . . . . . . 8  |-  D  C_  ( C  u.  D
)
136135, 93syl5sseqr 3340 . . . . . . 7  |-  ( ph  ->  D  C_  A )
13785mpteq2ia 4232 . . . . . . . 8  |-  ( k  e.  D  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
)  =  ( k  e.  D  |->  ( F `
 k ) )
138 resmpt 5131 . . . . . . . 8  |-  ( D 
C_  A  ->  (
( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) )  |`  D )  =  ( k  e.  D  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) )
139 resmpt 5131 . . . . . . . 8  |-  ( D 
C_  A  ->  (
( k  e.  A  |->  ( F `  k
) )  |`  D )  =  ( k  e.  D  |->  ( F `  k ) ) )
140137, 138, 1393eqtr4a 2445 . . . . . . 7  |-  ( D 
C_  A  ->  (
( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) )  |`  D )  =  ( ( k  e.  A  |->  ( F `  k
) )  |`  D ) )
141136, 140syl 16 . . . . . 6  |-  ( ph  ->  ( ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) )  |`  D )  =  ( ( k  e.  A  |->  ( F `  k
) )  |`  D ) )
142134, 141eqtr4d 2422 . . . . 5  |-  ( ph  ->  ( F  |`  D )  =  ( ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
)  |`  D ) )
143142oveq2d 6036 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  |`  D ) )  =  ( G 
gsumg  ( ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) )  |`  D ) ) )
144107, 55fmptd 5832 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) ) : A --> B )
145 frn 5537 . . . . . . 7  |-  ( ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) : A --> ( (mrCls `  (SubMnd `  G
) ) `  ran  F )  ->  ran  ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
)  C_  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )
14656, 145syl 16 . . . . . 6  |-  ( ph  ->  ran  ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) 
C_  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
1474cntzidss 15063 . . . . . 6  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  C_  ( Z `  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  /\  ran  (
k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) )  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  ran  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) )  C_  ( Z `  ran  (
k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) ) )
14838, 146, 147syl2anc 643 . . . . 5  |-  ( ph  ->  ran  ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) ) 
C_  ( Z `  ran  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) ) ) )
149 eldifn 3413 . . . . . . . 8  |-  ( k  e.  ( A  \  D )  ->  -.  k  e.  D )
150149adantl 453 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  \  D ) )  ->  -.  k  e.  D )
151150, 72syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  ( A  \  D ) )  ->  if (
k  e.  D , 
( F `  k
) ,  .0.  )  =  .0.  )
152151suppss2 6239 . . . . 5  |-  ( ph  ->  ( `' ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  C_  D
)
1531, 2, 4, 5, 6, 144, 148, 152, 23gsumzres 15444 . . . 4  |-  ( ph  ->  ( G  gsumg  ( ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  .0.  ) )  |`  D ) )  =  ( G  gsumg  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) ) ) )
154143, 153eqtrd 2419 . . 3  |-  ( ph  ->  ( G  gsumg  ( F  |`  D ) )  =  ( G 
gsumg  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  .0.  ) ) ) )
155133, 154oveq12d 6038 . 2  |-  ( ph  ->  ( ( G  gsumg  ( F  |`  C ) )  .+  ( G  gsumg  ( F  |`  D ) ) )  =  ( ( G  gsumg  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  .0.  ) ) ) 
.+  ( G  gsumg  ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  .0.  )
) ) ) )
15657, 112, 1553eqtr4d 2429 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  C ) )  .+  ( G 
gsumg  ( F  |`  D ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899    \ cdif 3260    u. cun 3261    i^i cin 3262    C_ wss 3263   (/)c0 3571   ifcif 3682   {csn 3757    e. cmpt 4207   `'ccnv 4817   ran crn 4819    |` cres 4820   "cima 4821    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020    o Fcof 6242   Fincfn 7045   Basecbs 13396   ↾s cress 13397   +g cplusg 13456   0gc0g 13650    gsumg cgsu 13651  Moorecmre 13734  mrClscmrc 13735  ACScacs 13737   Mndcmnd 14611  SubMndcsubmnd 14664  Cntzccntz 15041  CMndccmn 15339
This theorem is referenced by:  gsumsplit  15457  dpjidcl  15543
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-fzo 11066  df-seq 11251  df-hash 11546  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-0g 13654  df-gsum 13655  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-cntz 15043  df-cmn 15341
  Copyright terms: Public domain W3C validator