HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h0elch Unicode version

Theorem h0elch 21780
Description: The zero subspace is a closed subspace. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
h0elch  |-  0H  e.  CH

Proof of Theorem h0elch
StepHypRef Expression
1 df-ch0 21778 . 2  |-  0H  =  { 0h }
2 hsn0elch 21773 . 2  |-  { 0h }  e.  CH
31, 2eqeltri 2326 1  |-  0H  e.  CH
Colors of variables: wff set class
Syntax hints:    e. wcel 1621   {csn 3600   0hc0v 21450   CHcch 21455   0Hc0h 21461
This theorem is referenced by:  h0elsh  21781  chintcl  21857  omlsi  21929  pjoml  21961  pjoc2  21964  chj0i  21980  chj00i  22012  chm0  22016  chne0  22019  chocin  22020  chj0  22022  chlejb1  22037  chnle  22039  ledi  22065  chsup0  22073  h1datom  22107  cmbr3  22151  cm0  22152  pjoml2  22154  cmcm  22157  cmcm3  22158  lecm  22160  qlaxr3i  22179  nonbooli  22194  pjige0  22234  pjhfo  22249  pj11  22257  ho0f  22277  pjhmop  22676  pjidmco  22707  hst0  22759  largei  22793  mdslmd1lem3  22853  mdslmd1lem4  22854  csmdsymi  22860  elat2  22866  atcveq0  22874  hatomic  22886  atcv0eq  22905  atoml2i  22909  atordi  22910  atord  22914  atcvat2  22915  chirred  22921
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771  ax-hilex 21525  ax-hfvadd 21526  ax-hvcom 21527  ax-hvass 21528  ax-hv0cl 21529  ax-hvaddid 21530  ax-hfvmul 21531  ax-hvmulid 21532  ax-hvmulass 21533  ax-hvdistr1 21534  ax-hvdistr2 21535  ax-hvmul0 21536  ax-hfi 21604  ax-his1 21607  ax-his2 21608  ax-his3 21609  ax-his4 21610
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-er 6614  df-map 6728  df-pm 6729  df-en 6818  df-dom 6819  df-sdom 6820  df-sup 7148  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-n0 9919  df-z 9978  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-icc 10615  df-seq 10999  df-exp 11057  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-topgen 13292  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-top 16584  df-bases 16586  df-topon 16587  df-lm 16907  df-haus 16991  df-grpo 20804  df-gid 20805  df-ginv 20806  df-gdiv 20807  df-ablo 20895  df-vc 21048  df-nv 21094  df-va 21097  df-ba 21098  df-sm 21099  df-0v 21100  df-vs 21101  df-nmcv 21102  df-ims 21103  df-hnorm 21494  df-hvsub 21497  df-hlim 21498  df-sh 21732  df-ch 21747  df-ch0 21778
  Copyright terms: Public domain W3C validator