MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfnq Structured version   Unicode version

Theorem halfnq 8845
Description: One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
halfnq  |-  ( A  e.  Q.  ->  E. x
( x  +Q  x
)  =  A )
Distinct variable group:    x, A

Proof of Theorem halfnq
StepHypRef Expression
1 distrnq 8830 . . . 4  |-  ( A  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
2 distrnq 8830 . . . . . . . 8  |-  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
3 1nq 8797 . . . . . . . . . . 11  |-  1Q  e.  Q.
4 addclnq 8814 . . . . . . . . . . 11  |-  ( ( 1Q  e.  Q.  /\  1Q  e.  Q. )  -> 
( 1Q  +Q  1Q )  e.  Q. )
53, 3, 4mp2an 654 . . . . . . . . . 10  |-  ( 1Q 
+Q  1Q )  e. 
Q.
6 recidnq 8834 . . . . . . . . . 10  |-  ( ( 1Q  +Q  1Q )  e.  Q.  ->  (
( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  1Q )
75, 6ax-mp 8 . . . . . . . . 9  |-  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  1Q
87, 7oveq12i 6085 . . . . . . . 8  |-  ( ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( 1Q  +Q  1Q )
92, 8eqtri 2455 . . . . . . 7  |-  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( 1Q  +Q  1Q )
109oveq1i 6083 . . . . . 6  |-  ( ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
117oveq2i 6084 . . . . . . 7  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  1Q )
12 mulassnq 8828 . . . . . . . 8  |-  ( ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
13 mulcomnq 8822 . . . . . . . . 9  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  =  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
1413oveq1i 6083 . . . . . . . 8  |-  ( ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( ( 1Q 
+Q  1Q )  .Q  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
1512, 14eqtr3i 2457 . . . . . . 7  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
16 recclnq 8835 . . . . . . . . 9  |-  ( ( 1Q  +Q  1Q )  e.  Q.  ->  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q. )
17 addclnq 8814 . . . . . . . . 9  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q.  /\  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q. )  ->  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q. )
1816, 16, 17syl2anc 643 . . . . . . . 8  |-  ( ( 1Q  +Q  1Q )  e.  Q.  ->  (
( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q. )
19 mulidnq 8832 . . . . . . . 8  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q.  ->  ( ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  1Q )  =  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
205, 18, 19mp2b 10 . . . . . . 7  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  1Q )  =  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
2111, 15, 203eqtr3i 2463 . . . . . 6  |-  ( ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
2210, 21, 73eqtr3i 2463 . . . . 5  |-  ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  1Q
2322oveq2i 6084 . . . 4  |-  ( A  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( A  .Q  1Q )
241, 23eqtr3i 2457 . . 3  |-  ( ( A  .Q  ( *Q
`  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( A  .Q  1Q )
25 mulidnq 8832 . . 3  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
2624, 25syl5eq 2479 . 2  |-  ( A  e.  Q.  ->  (
( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A )
27 ovex 6098 . . 3  |-  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
_V
28 oveq12 6082 . . . . 5  |-  ( ( x  =  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  /\  x  =  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  ->  (
x  +Q  x )  =  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
2928anidms 627 . . . 4  |-  ( x  =  ( A  .Q  ( *Q `  ( 1Q 
+Q  1Q ) ) )  ->  ( x  +Q  x )  =  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
3029eqeq1d 2443 . . 3  |-  ( x  =  ( A  .Q  ( *Q `  ( 1Q 
+Q  1Q ) ) )  ->  ( (
x  +Q  x )  =  A  <->  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A ) )
3127, 30spcev 3035 . 2  |-  ( ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A  ->  E. x
( x  +Q  x
)  =  A )
3226, 31syl 16 1  |-  ( A  e.  Q.  ->  E. x
( x  +Q  x
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1550    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   Q.cnq 8719   1Qc1q 8720    +Q cplq 8722    .Q cmq 8723   *Qcrq 8724
This theorem is referenced by:  nsmallnq  8846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ni 8741  df-pli 8742  df-mi 8743  df-lti 8744  df-plpq 8777  df-mpq 8778  df-enq 8780  df-nq 8781  df-erq 8782  df-plq 8783  df-mq 8784  df-1nq 8785  df-rq 8786
  Copyright terms: Public domain W3C validator