MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcard Unicode version

Theorem harcard 7821
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harcard  |-  ( card `  (har `  A )
)  =  (har `  A )

Proof of Theorem harcard
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 harcl 7485 . 2  |-  (har `  A )  e.  On
2 harndom 7488 . . . . . . 7  |-  -.  (har `  A )  ~<_  A
3 simpll 731 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  x  e.  On )
4 simpr 448 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  (har `  A ) )
5 elharval 7487 . . . . . . . . . . 11  |-  ( y  e.  (har `  A
)  <->  ( y  e.  On  /\  y  ~<_  A ) )
64, 5sylib 189 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( y  e.  On  /\  y  ~<_  A ) )
76simpld 446 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  On )
8 ontri1 4575 . . . . . . . . 9  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  C_  y  <->  -.  y  e.  x ) )
93, 7, 8syl2anc 643 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( x  C_  y  <->  -.  y  e.  x ) )
10 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  (har `  A
)  ~~  x )
11 vex 2919 . . . . . . . . . . . 12  |-  y  e. 
_V
12 ssdomg 7112 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
x  C_  y  ->  x  ~<_  y ) )
1311, 12ax-mp 8 . . . . . . . . . . 11  |-  ( x 
C_  y  ->  x  ~<_  y )
146simprd 450 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  ~<_  A )
15 domtr 7119 . . . . . . . . . . 11  |-  ( ( x  ~<_  y  /\  y  ~<_  A )  ->  x  ~<_  A )
1613, 14, 15syl2anr 465 . . . . . . . . . 10  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  x  ~<_  A )
17 endomtr 7124 . . . . . . . . . 10  |-  ( ( (har `  A )  ~~  x  /\  x  ~<_  A )  ->  (har `  A )  ~<_  A )
1810, 16, 17syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  (har `  A
)  ~<_  A )
1918ex 424 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( x  C_  y  ->  (har `  A
)  ~<_  A ) )
209, 19sylbird 227 . . . . . . 7  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( -.  y  e.  x  ->  (har
`  A )  ~<_  A ) )
212, 20mt3i 120 . . . . . 6  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  x )
2221ex 424 . . . . 5  |-  ( ( x  e.  On  /\  (har `  A )  ~~  x )  ->  (
y  e.  (har `  A )  ->  y  e.  x ) )
2322ssrdv 3314 . . . 4  |-  ( ( x  e.  On  /\  (har `  A )  ~~  x )  ->  (har `  A )  C_  x
)
2423ex 424 . . 3  |-  ( x  e.  On  ->  (
(har `  A )  ~~  x  ->  (har `  A )  C_  x
) )
2524rgen 2731 . 2  |-  A. x  e.  On  ( (har `  A )  ~~  x  ->  (har `  A )  C_  x )
26 iscard2 7819 . 2  |-  ( (
card `  (har `  A
) )  =  (har
`  A )  <->  ( (har `  A )  e.  On  /\ 
A. x  e.  On  ( (har `  A )  ~~  x  ->  (har `  A )  C_  x
) ) )
271, 25, 26mpbir2an 887 1  |-  ( card `  (har `  A )
)  =  (har `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    C_ wss 3280   class class class wbr 4172   Oncon0 4541   ` cfv 5413    ~~ cen 7065    ~<_ cdom 7066  harchar 7480   cardccrd 7778
This theorem is referenced by:  cardprclem  7822  alephcard  7907  pwcfsdom  8414  hargch  8508
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6508  df-recs 6592  df-er 6864  df-en 7069  df-dom 7070  df-oi 7435  df-har 7482  df-card 7782
  Copyright terms: Public domain W3C validator