MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcard Unicode version

Theorem harcard 7613
Description: The class of ordinal numbers dominated by a set is a cardinal number. Theorem 59 of [Suppes] p. 228. (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harcard  |-  ( card `  (har `  A )
)  =  (har `  A )

Proof of Theorem harcard
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 harcl 7277 . 2  |-  (har `  A )  e.  On
2 harndom 7280 . . . . . . 7  |-  -.  (har `  A )  ~<_  A
3 simpll 730 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  x  e.  On )
4 simpr 447 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  (har `  A ) )
5 elharval 7279 . . . . . . . . . . 11  |-  ( y  e.  (har `  A
)  <->  ( y  e.  On  /\  y  ~<_  A ) )
64, 5sylib 188 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( y  e.  On  /\  y  ~<_  A ) )
76simpld 445 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  On )
8 ontri1 4428 . . . . . . . . 9  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  C_  y  <->  -.  y  e.  x ) )
93, 7, 8syl2anc 642 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( x  C_  y  <->  -.  y  e.  x ) )
10 simpllr 735 . . . . . . . . . 10  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  (har `  A
)  ~~  x )
11 vex 2793 . . . . . . . . . . . 12  |-  y  e. 
_V
12 ssdomg 6909 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
x  C_  y  ->  x  ~<_  y ) )
1311, 12ax-mp 8 . . . . . . . . . . 11  |-  ( x 
C_  y  ->  x  ~<_  y )
146simprd 449 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  ~<_  A )
15 domtr 6916 . . . . . . . . . . 11  |-  ( ( x  ~<_  y  /\  y  ~<_  A )  ->  x  ~<_  A )
1613, 14, 15syl2anr 464 . . . . . . . . . 10  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  x  ~<_  A )
17 endomtr 6921 . . . . . . . . . 10  |-  ( ( (har `  A )  ~~  x  /\  x  ~<_  A )  ->  (har `  A )  ~<_  A )
1810, 16, 17syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( x  e.  On  /\  (har `  A )  ~~  x
)  /\  y  e.  (har `  A ) )  /\  x  C_  y
)  ->  (har `  A
)  ~<_  A )
1918ex 423 . . . . . . . 8  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( x  C_  y  ->  (har `  A
)  ~<_  A ) )
209, 19sylbird 226 . . . . . . 7  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  ( -.  y  e.  x  ->  (har
`  A )  ~<_  A ) )
212, 20mt3i 118 . . . . . 6  |-  ( ( ( x  e.  On  /\  (har `  A )  ~~  x )  /\  y  e.  (har `  A )
)  ->  y  e.  x )
2221ex 423 . . . . 5  |-  ( ( x  e.  On  /\  (har `  A )  ~~  x )  ->  (
y  e.  (har `  A )  ->  y  e.  x ) )
2322ssrdv 3187 . . . 4  |-  ( ( x  e.  On  /\  (har `  A )  ~~  x )  ->  (har `  A )  C_  x
)
2423ex 423 . . 3  |-  ( x  e.  On  ->  (
(har `  A )  ~~  x  ->  (har `  A )  C_  x
) )
2524rgen 2610 . 2  |-  A. x  e.  On  ( (har `  A )  ~~  x  ->  (har `  A )  C_  x )
26 iscard2 7611 . 2  |-  ( (
card `  (har `  A
) )  =  (har
`  A )  <->  ( (har `  A )  e.  On  /\ 
A. x  e.  On  ( (har `  A )  ~~  x  ->  (har `  A )  C_  x
) ) )
271, 25, 26mpbir2an 886 1  |-  ( card `  (har `  A )
)  =  (har `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   _Vcvv 2790    C_ wss 3154   class class class wbr 4025   Oncon0 4394   ` cfv 5257    ~~ cen 6862    ~<_ cdom 6863  harchar 7272   cardccrd 7570
This theorem is referenced by:  cardprclem  7614  alephcard  7699  pwcfsdom  8207  hargch  8301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-riota 6306  df-recs 6390  df-er 6662  df-en 6866  df-dom 6867  df-oi 7227  df-har 7274  df-card 7574
  Copyright terms: Public domain W3C validator