MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonic Unicode version

Theorem harmonic 12319
Description: The harmonic series  H diverges. This fact follows from the stronger emcl 20298, which establishes that the harmonic series grows as  log n  +  gamma  + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
harmonic.1  |-  F  =  ( n  e.  NN  |->  ( 1  /  n
) )
harmonic.2  |-  H  =  seq  1 (  +  ,  F )
Assertion
Ref Expression
harmonic  |-  -.  H  e.  dom  ~~>

Proof of Theorem harmonic
Dummy variables  k 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10264 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10037 . . . . 5  |-  0  e.  ZZ
32a1i 10 . . . 4  |-  ( H  e.  dom  ~~>  ->  0  e.  ZZ )
4 1ex 8835 . . . . . 6  |-  1  e.  _V
54fvconst2 5731 . . . . 5  |-  ( k  e.  NN0  ->  ( ( NN0  X.  { 1 } ) `  k
)  =  1 )
65adantl 452 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN0 )  ->  (
( NN0  X.  { 1 } ) `  k
)  =  1 )
7 1re 8839 . . . . 5  |-  1  e.  RR
87a1i 10 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN0 )  ->  1  e.  RR )
9 harmonic.2 . . . . . . 7  |-  H  =  seq  1 (  +  ,  F )
109eleq1i 2348 . . . . . 6  |-  ( H  e.  dom  ~~>  <->  seq  1
(  +  ,  F
)  e.  dom  ~~>  )
1110biimpi 186 . . . . 5  |-  ( H  e.  dom  ~~>  ->  seq  1 (  +  ,  F )  e.  dom  ~~>  )
12 oveq2 5868 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  /  n )  =  ( 1  / 
k ) )
13 harmonic.1 . . . . . . . . 9  |-  F  =  ( n  e.  NN  |->  ( 1  /  n
) )
14 ovex 5885 . . . . . . . . 9  |-  ( 1  /  k )  e. 
_V
1512, 13, 14fvmpt 5604 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 1  / 
k ) )
16 nnrecre 9784 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
1715, 16eqeltrd 2359 . . . . . . 7  |-  ( k  e.  NN  ->  ( F `  k )  e.  RR )
1817adantl 452 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
19 nnrp 10365 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR+ )
2019rpreccld 10402 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR+ )
2120rpge0d 10396 . . . . . . . 8  |-  ( k  e.  NN  ->  0  <_  ( 1  /  k
) )
2221, 15breqtrrd 4051 . . . . . . 7  |-  ( k  e.  NN  ->  0  <_  ( F `  k
) )
2322adantl 452 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN )  ->  0  <_  ( F `  k
) )
24 nnre 9755 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR )
2524lep1d 9690 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  <_  ( k  +  1 ) )
26 nngt0 9777 . . . . . . . . . 10  |-  ( k  e.  NN  ->  0  <  k )
27 peano2re 8987 . . . . . . . . . . 11  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
2824, 27syl 15 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  RR )
29 peano2nn 9760 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
3029nngt0d 9791 . . . . . . . . . 10  |-  ( k  e.  NN  ->  0  <  ( k  +  1 ) )
31 lerec 9640 . . . . . . . . . 10  |-  ( ( ( k  e.  RR  /\  0  <  k )  /\  ( ( k  +  1 )  e.  RR  /\  0  < 
( k  +  1 ) ) )  -> 
( k  <_  (
k  +  1 )  <-> 
( 1  /  (
k  +  1 ) )  <_  ( 1  /  k ) ) )
3224, 26, 28, 30, 31syl22anc 1183 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  <_  ( k  +  1 )  <->  ( 1  /  ( k  +  1 ) )  <_ 
( 1  /  k
) ) )
3325, 32mpbid 201 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  /  ( k  +  1 ) )  <_  ( 1  / 
k ) )
34 oveq2 5868 . . . . . . . . . 10  |-  ( n  =  ( k  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( k  +  1 ) ) )
35 ovex 5885 . . . . . . . . . 10  |-  ( 1  /  ( k  +  1 ) )  e. 
_V
3634, 13, 35fvmpt 5604 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  NN  ->  ( F `  ( k  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
3729, 36syl 15 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
3833, 37, 153brtr4d 4055 . . . . . . 7  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
3938adantl 452 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
40 oveq2 5868 . . . . . . . . 9  |-  ( k  =  j  ->  (
2 ^ k )  =  ( 2 ^ j ) )
4140fveq2d 5531 . . . . . . . . 9  |-  ( k  =  j  ->  ( F `  ( 2 ^ k ) )  =  ( F `  ( 2 ^ j
) ) )
4240, 41oveq12d 5878 . . . . . . . 8  |-  ( k  =  j  ->  (
( 2 ^ k
)  x.  ( F `
 ( 2 ^ k ) ) )  =  ( ( 2 ^ j )  x.  ( F `  (
2 ^ j ) ) ) )
43 fconstmpt 4734 . . . . . . . . 9  |-  ( NN0 
X.  { 1 } )  =  ( k  e.  NN0  |->  1 )
44 2nn 9879 . . . . . . . . . . . . . 14  |-  2  e.  NN
45 nnexpcl 11118 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
4644, 45mpan 651 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 2 ^ k )  e.  NN )
47 oveq2 5868 . . . . . . . . . . . . . 14  |-  ( n  =  ( 2 ^ k )  ->  (
1  /  n )  =  ( 1  / 
( 2 ^ k
) ) )
48 ovex 5885 . . . . . . . . . . . . . 14  |-  ( 1  /  ( 2 ^ k ) )  e. 
_V
4947, 13, 48fvmpt 5604 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  NN  ->  ( F `  ( 2 ^ k ) )  =  ( 1  / 
( 2 ^ k
) ) )
5046, 49syl 15 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( F `
 ( 2 ^ k ) )  =  ( 1  /  (
2 ^ k ) ) )
5150oveq2d 5876 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) )  =  ( ( 2 ^ k )  x.  (
1  /  ( 2 ^ k ) ) ) )
52 nncn 9756 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  NN  ->  (
2 ^ k )  e.  CC )
53 nnne0 9780 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  NN  ->  (
2 ^ k )  =/=  0 )
5452, 53recidd 9533 . . . . . . . . . . . 12  |-  ( ( 2 ^ k )  e.  NN  ->  (
( 2 ^ k
)  x.  ( 1  /  ( 2 ^ k ) ) )  =  1 )
5546, 54syl 15 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  x.  ( 1  / 
( 2 ^ k
) ) )  =  1 )
5651, 55eqtrd 2317 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) )  =  1 )
5756mpteq2ia 4104 . . . . . . . . 9  |-  ( k  e.  NN0  |->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) ) )  =  ( k  e. 
NN0  |->  1 )
5843, 57eqtr4i 2308 . . . . . . . 8  |-  ( NN0 
X.  { 1 } )  =  ( k  e.  NN0  |->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) ) )
59 ovex 5885 . . . . . . . 8  |-  ( ( 2 ^ j )  x.  ( F `  ( 2 ^ j
) ) )  e. 
_V
6042, 58, 59fvmpt 5604 . . . . . . 7  |-  ( j  e.  NN0  ->  ( ( NN0  X.  { 1 } ) `  j
)  =  ( ( 2 ^ j )  x.  ( F `  ( 2 ^ j
) ) ) )
6160adantl 452 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN0 )  ->  (
( NN0  X.  { 1 } ) `  j
)  =  ( ( 2 ^ j )  x.  ( F `  ( 2 ^ j
) ) ) )
6218, 23, 39, 61climcnds 12312 . . . . 5  |-  ( H  e.  dom  ~~>  ->  (  seq  1 (  +  ,  F )  e.  dom  ~~>  <->  seq  0 (  +  , 
( NN0  X.  { 1 } ) )  e. 
dom 
~~>  ) )
6311, 62mpbid 201 . . . 4  |-  ( H  e.  dom  ~~>  ->  seq  0 (  +  , 
( NN0  X.  { 1 } ) )  e. 
dom 
~~>  )
641, 3, 6, 8, 63isumrecl 12230 . . 3  |-  ( H  e.  dom  ~~>  ->  sum_ k  e.  NN0  1  e.  RR )
65 arch 9964 . . 3  |-  ( sum_ k  e.  NN0  1  e.  RR  ->  E. j  e.  NN  sum_ k  e.  NN0  1  <  j )
6664, 65syl 15 . 2  |-  ( H  e.  dom  ~~>  ->  E. j  e.  NN  sum_ k  e.  NN0  1  <  j )
67 fzfid 11037 . . . . . . 7  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
1 ... j )  e. 
Fin )
68 ax-1cn 8797 . . . . . . 7  |-  1  e.  CC
69 fsumconst 12254 . . . . . . 7  |-  ( ( ( 1 ... j
)  e.  Fin  /\  1  e.  CC )  -> 
sum_ k  e.  ( 1 ... j ) 1  =  ( (
# `  ( 1 ... j ) )  x.  1 ) )
7067, 68, 69sylancl 643 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  sum_ k  e.  ( 1 ... j
) 1  =  ( ( # `  (
1 ... j ) )  x.  1 ) )
71 nnnn0 9974 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  NN0 )
7271adantl 452 . . . . . . . 8  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  j  e.  NN0 )
73 hashfz1 11347 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( # `  ( 1 ... j
) )  =  j )
7472, 73syl 15 . . . . . . 7  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  ( # `
 ( 1 ... j ) )  =  j )
7574oveq1d 5875 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
( # `  ( 1 ... j ) )  x.  1 )  =  ( j  x.  1 ) )
76 nncn 9756 . . . . . . . 8  |-  ( j  e.  NN  ->  j  e.  CC )
7776adantl 452 . . . . . . 7  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  j  e.  CC )
7877mulid1d 8854 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
j  x.  1 )  =  j )
7970, 75, 783eqtrd 2321 . . . . 5  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  sum_ k  e.  ( 1 ... j
) 1  =  j )
802a1i 10 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  0  e.  ZZ )
81 elfznn 10821 . . . . . . . . 9  |-  ( k  e.  ( 1 ... j )  ->  k  e.  NN )
82 nnnn0 9974 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
8381, 82syl 15 . . . . . . . 8  |-  ( k  e.  ( 1 ... j )  ->  k  e.  NN0 )
8483ssriv 3186 . . . . . . 7  |-  ( 1 ... j )  C_  NN0
8584a1i 10 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
1 ... j )  C_  NN0 )
865adantl 452 . . . . . 6  |-  ( ( ( H  e.  dom  ~~>  /\  j  e.  NN )  /\  k  e.  NN0 )  ->  ( ( NN0 
X.  { 1 } ) `  k )  =  1 )
877a1i 10 . . . . . 6  |-  ( ( ( H  e.  dom  ~~>  /\  j  e.  NN )  /\  k  e.  NN0 )  ->  1  e.  RR )
88 0le1 9299 . . . . . . 7  |-  0  <_  1
8988a1i 10 . . . . . 6  |-  ( ( ( H  e.  dom  ~~>  /\  j  e.  NN )  /\  k  e.  NN0 )  ->  0  <_  1
)
9063adantr 451 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  seq  0 (  +  , 
( NN0  X.  { 1 } ) )  e. 
dom 
~~>  )
911, 80, 67, 85, 86, 87, 89, 90isumless 12306 . . . . 5  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  sum_ k  e.  ( 1 ... j
) 1  <_  sum_ k  e.  NN0  1 )
9279, 91eqbrtrrd 4047 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  j  <_ 
sum_ k  e.  NN0  1 )
93 nnre 9755 . . . . 5  |-  ( j  e.  NN  ->  j  e.  RR )
94 lenlt 8903 . . . . 5  |-  ( ( j  e.  RR  /\  sum_ k  e.  NN0  1  e.  RR )  ->  (
j  <_  sum_ k  e. 
NN0  1  <->  -.  sum_ k  e.  NN0  1  <  j
) )
9593, 64, 94syl2anr 464 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
j  <_  sum_ k  e. 
NN0  1  <->  -.  sum_ k  e.  NN0  1  <  j
) )
9692, 95mpbid 201 . . 3  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  -.  sum_ k  e.  NN0  1  <  j )
9796nrexdv 2648 . 2  |-  ( H  e.  dom  ~~>  ->  -.  E. j  e.  NN  sum_ k  e.  NN0  1  < 
j )
9866, 97pm2.65i 165 1  |-  -.  H  e.  dom  ~~>
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   E.wrex 2546    C_ wss 3154   {csn 3642   class class class wbr 4025    e. cmpt 4079    X. cxp 4689   dom cdm 4691   ` cfv 5257  (class class class)co 5860   Fincfn 6865   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    < clt 8869    <_ cle 8870    / cdiv 9425   NNcn 9748   2c2 9797   NN0cn0 9967   ZZcz 10026   ...cfz 10784    seq cseq 11048   ^cexp 11106   #chash 11339    ~~> cli 11960   sum_csu 12160
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-ico 10664  df-fz 10785  df-fzo 10873  df-fl 10927  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-rlim 11965  df-sum 12161
  Copyright terms: Public domain W3C validator