MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonic Structured version   Unicode version

Theorem harmonic 12640
Description: The harmonic series  H diverges. This fact follows from the stronger emcl 20843, which establishes that the harmonic series grows as  log n  +  gamma  + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
harmonic.1  |-  F  =  ( n  e.  NN  |->  ( 1  /  n
) )
harmonic.2  |-  H  =  seq  1 (  +  ,  F )
Assertion
Ref Expression
harmonic  |-  -.  H  e.  dom  ~~>

Proof of Theorem harmonic
Dummy variables  k 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10522 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10295 . . . . 5  |-  0  e.  ZZ
32a1i 11 . . . 4  |-  ( H  e.  dom  ~~>  ->  0  e.  ZZ )
4 1ex 9088 . . . . . 6  |-  1  e.  _V
54fvconst2 5949 . . . . 5  |-  ( k  e.  NN0  ->  ( ( NN0  X.  { 1 } ) `  k
)  =  1 )
65adantl 454 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN0 )  ->  (
( NN0  X.  { 1 } ) `  k
)  =  1 )
7 1re 9092 . . . . 5  |-  1  e.  RR
87a1i 11 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN0 )  ->  1  e.  RR )
9 harmonic.2 . . . . . . 7  |-  H  =  seq  1 (  +  ,  F )
109eleq1i 2501 . . . . . 6  |-  ( H  e.  dom  ~~>  <->  seq  1
(  +  ,  F
)  e.  dom  ~~>  )
1110biimpi 188 . . . . 5  |-  ( H  e.  dom  ~~>  ->  seq  1 (  +  ,  F )  e.  dom  ~~>  )
12 oveq2 6091 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  /  n )  =  ( 1  / 
k ) )
13 harmonic.1 . . . . . . . . 9  |-  F  =  ( n  e.  NN  |->  ( 1  /  n
) )
14 ovex 6108 . . . . . . . . 9  |-  ( 1  /  k )  e. 
_V
1512, 13, 14fvmpt 5808 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  k )  =  ( 1  / 
k ) )
16 nnrecre 10038 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
1715, 16eqeltrd 2512 . . . . . . 7  |-  ( k  e.  NN  ->  ( F `  k )  e.  RR )
1817adantl 454 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
19 nnrp 10623 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR+ )
2019rpreccld 10660 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR+ )
2120rpge0d 10654 . . . . . . . 8  |-  ( k  e.  NN  ->  0  <_  ( 1  /  k
) )
2221, 15breqtrrd 4240 . . . . . . 7  |-  ( k  e.  NN  ->  0  <_  ( F `  k
) )
2322adantl 454 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN )  ->  0  <_  ( F `  k
) )
24 nnre 10009 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR )
2524lep1d 9944 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  <_  ( k  +  1 ) )
26 nngt0 10031 . . . . . . . . . 10  |-  ( k  e.  NN  ->  0  <  k )
27 peano2re 9241 . . . . . . . . . . 11  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
2824, 27syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  RR )
29 peano2nn 10014 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
3029nngt0d 10045 . . . . . . . . . 10  |-  ( k  e.  NN  ->  0  <  ( k  +  1 ) )
31 lerec 9894 . . . . . . . . . 10  |-  ( ( ( k  e.  RR  /\  0  <  k )  /\  ( ( k  +  1 )  e.  RR  /\  0  < 
( k  +  1 ) ) )  -> 
( k  <_  (
k  +  1 )  <-> 
( 1  /  (
k  +  1 ) )  <_  ( 1  /  k ) ) )
3224, 26, 28, 30, 31syl22anc 1186 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  <_  ( k  +  1 )  <->  ( 1  /  ( k  +  1 ) )  <_ 
( 1  /  k
) ) )
3325, 32mpbid 203 . . . . . . . 8  |-  ( k  e.  NN  ->  (
1  /  ( k  +  1 ) )  <_  ( 1  / 
k ) )
34 oveq2 6091 . . . . . . . . . 10  |-  ( n  =  ( k  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( k  +  1 ) ) )
35 ovex 6108 . . . . . . . . . 10  |-  ( 1  /  ( k  +  1 ) )  e. 
_V
3634, 13, 35fvmpt 5808 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  NN  ->  ( F `  ( k  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
3729, 36syl 16 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
3833, 37, 153brtr4d 4244 . . . . . . 7  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
3938adantl 454 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  k  e.  NN )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
40 oveq2 6091 . . . . . . . . 9  |-  ( k  =  j  ->  (
2 ^ k )  =  ( 2 ^ j ) )
4140fveq2d 5734 . . . . . . . . 9  |-  ( k  =  j  ->  ( F `  ( 2 ^ k ) )  =  ( F `  ( 2 ^ j
) ) )
4240, 41oveq12d 6101 . . . . . . . 8  |-  ( k  =  j  ->  (
( 2 ^ k
)  x.  ( F `
 ( 2 ^ k ) ) )  =  ( ( 2 ^ j )  x.  ( F `  (
2 ^ j ) ) ) )
43 fconstmpt 4923 . . . . . . . . 9  |-  ( NN0 
X.  { 1 } )  =  ( k  e.  NN0  |->  1 )
44 2nn 10135 . . . . . . . . . . . . . 14  |-  2  e.  NN
45 nnexpcl 11396 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
4644, 45mpan 653 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 2 ^ k )  e.  NN )
47 oveq2 6091 . . . . . . . . . . . . . 14  |-  ( n  =  ( 2 ^ k )  ->  (
1  /  n )  =  ( 1  / 
( 2 ^ k
) ) )
48 ovex 6108 . . . . . . . . . . . . . 14  |-  ( 1  /  ( 2 ^ k ) )  e. 
_V
4947, 13, 48fvmpt 5808 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  NN  ->  ( F `  ( 2 ^ k ) )  =  ( 1  / 
( 2 ^ k
) ) )
5046, 49syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( F `
 ( 2 ^ k ) )  =  ( 1  /  (
2 ^ k ) ) )
5150oveq2d 6099 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) )  =  ( ( 2 ^ k )  x.  (
1  /  ( 2 ^ k ) ) ) )
52 nncn 10010 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  NN  ->  (
2 ^ k )  e.  CC )
53 nnne0 10034 . . . . . . . . . . . . 13  |-  ( ( 2 ^ k )  e.  NN  ->  (
2 ^ k )  =/=  0 )
5452, 53recidd 9787 . . . . . . . . . . . 12  |-  ( ( 2 ^ k )  e.  NN  ->  (
( 2 ^ k
)  x.  ( 1  /  ( 2 ^ k ) ) )  =  1 )
5546, 54syl 16 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  x.  ( 1  / 
( 2 ^ k
) ) )  =  1 )
5651, 55eqtrd 2470 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) )  =  1 )
5756mpteq2ia 4293 . . . . . . . . 9  |-  ( k  e.  NN0  |->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) ) )  =  ( k  e. 
NN0  |->  1 )
5843, 57eqtr4i 2461 . . . . . . . 8  |-  ( NN0 
X.  { 1 } )  =  ( k  e.  NN0  |->  ( ( 2 ^ k )  x.  ( F `  ( 2 ^ k
) ) ) )
59 ovex 6108 . . . . . . . 8  |-  ( ( 2 ^ j )  x.  ( F `  ( 2 ^ j
) ) )  e. 
_V
6042, 58, 59fvmpt 5808 . . . . . . 7  |-  ( j  e.  NN0  ->  ( ( NN0  X.  { 1 } ) `  j
)  =  ( ( 2 ^ j )  x.  ( F `  ( 2 ^ j
) ) ) )
6160adantl 454 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN0 )  ->  (
( NN0  X.  { 1 } ) `  j
)  =  ( ( 2 ^ j )  x.  ( F `  ( 2 ^ j
) ) ) )
6218, 23, 39, 61climcnds 12633 . . . . 5  |-  ( H  e.  dom  ~~>  ->  (  seq  1 (  +  ,  F )  e.  dom  ~~>  <->  seq  0 (  +  , 
( NN0  X.  { 1 } ) )  e. 
dom 
~~>  ) )
6311, 62mpbid 203 . . . 4  |-  ( H  e.  dom  ~~>  ->  seq  0 (  +  , 
( NN0  X.  { 1 } ) )  e. 
dom 
~~>  )
641, 3, 6, 8, 63isumrecl 12551 . . 3  |-  ( H  e.  dom  ~~>  ->  sum_ k  e.  NN0  1  e.  RR )
65 arch 10220 . . 3  |-  ( sum_ k  e.  NN0  1  e.  RR  ->  E. j  e.  NN  sum_ k  e.  NN0  1  <  j )
6664, 65syl 16 . 2  |-  ( H  e.  dom  ~~>  ->  E. j  e.  NN  sum_ k  e.  NN0  1  <  j )
67 fzfid 11314 . . . . . . 7  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
1 ... j )  e. 
Fin )
68 ax-1cn 9050 . . . . . . 7  |-  1  e.  CC
69 fsumconst 12575 . . . . . . 7  |-  ( ( ( 1 ... j
)  e.  Fin  /\  1  e.  CC )  -> 
sum_ k  e.  ( 1 ... j ) 1  =  ( (
# `  ( 1 ... j ) )  x.  1 ) )
7067, 68, 69sylancl 645 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  sum_ k  e.  ( 1 ... j
) 1  =  ( ( # `  (
1 ... j ) )  x.  1 ) )
71 nnnn0 10230 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  NN0 )
7271adantl 454 . . . . . . . 8  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  j  e.  NN0 )
73 hashfz1 11632 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( # `  ( 1 ... j
) )  =  j )
7472, 73syl 16 . . . . . . 7  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  ( # `
 ( 1 ... j ) )  =  j )
7574oveq1d 6098 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
( # `  ( 1 ... j ) )  x.  1 )  =  ( j  x.  1 ) )
76 nncn 10010 . . . . . . . 8  |-  ( j  e.  NN  ->  j  e.  CC )
7776adantl 454 . . . . . . 7  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  j  e.  CC )
7877mulid1d 9107 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
j  x.  1 )  =  j )
7970, 75, 783eqtrd 2474 . . . . 5  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  sum_ k  e.  ( 1 ... j
) 1  =  j )
802a1i 11 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  0  e.  ZZ )
81 elfznn 11082 . . . . . . . . 9  |-  ( k  e.  ( 1 ... j )  ->  k  e.  NN )
82 nnnn0 10230 . . . . . . . . 9  |-  ( k  e.  NN  ->  k  e.  NN0 )
8381, 82syl 16 . . . . . . . 8  |-  ( k  e.  ( 1 ... j )  ->  k  e.  NN0 )
8483ssriv 3354 . . . . . . 7  |-  ( 1 ... j )  C_  NN0
8584a1i 11 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
1 ... j )  C_  NN0 )
865adantl 454 . . . . . 6  |-  ( ( ( H  e.  dom  ~~>  /\  j  e.  NN )  /\  k  e.  NN0 )  ->  ( ( NN0 
X.  { 1 } ) `  k )  =  1 )
877a1i 11 . . . . . 6  |-  ( ( ( H  e.  dom  ~~>  /\  j  e.  NN )  /\  k  e.  NN0 )  ->  1  e.  RR )
88 0le1 9553 . . . . . . 7  |-  0  <_  1
8988a1i 11 . . . . . 6  |-  ( ( ( H  e.  dom  ~~>  /\  j  e.  NN )  /\  k  e.  NN0 )  ->  0  <_  1
)
9063adantr 453 . . . . . 6  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  seq  0 (  +  , 
( NN0  X.  { 1 } ) )  e. 
dom 
~~>  )
911, 80, 67, 85, 86, 87, 89, 90isumless 12627 . . . . 5  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  sum_ k  e.  ( 1 ... j
) 1  <_  sum_ k  e.  NN0  1 )
9279, 91eqbrtrrd 4236 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  j  <_ 
sum_ k  e.  NN0  1 )
93 nnre 10009 . . . . 5  |-  ( j  e.  NN  ->  j  e.  RR )
94 lenlt 9156 . . . . 5  |-  ( ( j  e.  RR  /\  sum_ k  e.  NN0  1  e.  RR )  ->  (
j  <_  sum_ k  e. 
NN0  1  <->  -.  sum_ k  e.  NN0  1  <  j
) )
9593, 64, 94syl2anr 466 . . . 4  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  (
j  <_  sum_ k  e. 
NN0  1  <->  -.  sum_ k  e.  NN0  1  <  j
) )
9692, 95mpbid 203 . . 3  |-  ( ( H  e.  dom  ~~>  /\  j  e.  NN )  ->  -.  sum_ k  e.  NN0  1  <  j )
9796nrexdv 2811 . 2  |-  ( H  e.  dom  ~~>  ->  -.  E. j  e.  NN  sum_ k  e.  NN0  1  < 
j )
9866, 97pm2.65i 168 1  |-  -.  H  e.  dom  ~~>
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2708    C_ wss 3322   {csn 3816   class class class wbr 4214    e. cmpt 4268    X. cxp 4878   dom cdm 4880   ` cfv 5456  (class class class)co 6083   Fincfn 7111   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997    < clt 9122    <_ cle 9123    / cdiv 9679   NNcn 10002   2c2 10051   NN0cn0 10223   ZZcz 10284   ...cfz 11045    seq cseq 11325   ^cexp 11384   #chash 11620    ~~> cli 12280   sum_csu 12481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-ico 10924  df-fz 11046  df-fzo 11138  df-fl 11204  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-rlim 12285  df-sum 12482
  Copyright terms: Public domain W3C validator