MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogs Unicode version

Theorem hartogs 7227
Description: Given any set, the Hartogs number of the set is the least ordinal not dominated by that set. This theorem proves that there is always an ordinal which satisfies this. (This theorem can be proven trivially using the AC - see theorem ondomon 8153- but this proof works in ZF.) (Contributed by Jeff Hankins, 22-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
hartogs  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  On )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem hartogs
StepHypRef Expression
1 onelon 4389 . . . . . . . . . . . 12  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  e.  On )
2 vex 2766 . . . . . . . . . . . . 13  |-  z  e. 
_V
3 onelss 4406 . . . . . . . . . . . . . 14  |-  ( z  e.  On  ->  (
y  e.  z  -> 
y  C_  z )
)
43imp 420 . . . . . . . . . . . . 13  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  C_  z )
5 ssdomg 6875 . . . . . . . . . . . . 13  |-  ( z  e.  _V  ->  (
y  C_  z  ->  y  ~<_  z ) )
62, 4, 5mpsyl 61 . . . . . . . . . . . 12  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  ~<_  z )
71, 6jca 520 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  y  e.  z )  ->  ( y  e.  On  /\  y  ~<_  z ) )
8 domtr 6882 . . . . . . . . . . . . 13  |-  ( ( y  ~<_  z  /\  z  ~<_  A )  ->  y  ~<_  A )
98anim2i 555 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  ( y  ~<_  z  /\  z  ~<_  A ) )  ->  ( y  e.  On  /\  y  ~<_  A ) )
109anassrs 632 . . . . . . . . . . 11  |-  ( ( ( y  e.  On  /\  y  ~<_  z )  /\  z  ~<_  A )  -> 
( y  e.  On  /\  y  ~<_  A ) )
117, 10sylan 459 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  y  e.  z )  /\  z  ~<_  A )  ->  ( y  e.  On  /\  y  ~<_  A ) )
1211exp31 590 . . . . . . . . 9  |-  ( z  e.  On  ->  (
y  e.  z  -> 
( z  ~<_  A  -> 
( y  e.  On  /\  y  ~<_  A ) ) ) )
1312com12 29 . . . . . . . 8  |-  ( y  e.  z  ->  (
z  e.  On  ->  ( z  ~<_  A  ->  (
y  e.  On  /\  y  ~<_  A ) ) ) )
1413imp3a 422 . . . . . . 7  |-  ( y  e.  z  ->  (
( z  e.  On  /\  z  ~<_  A )  -> 
( y  e.  On  /\  y  ~<_  A ) ) )
15 breq1 4000 . . . . . . . 8  |-  ( x  =  z  ->  (
x  ~<_  A  <->  z  ~<_  A ) )
1615elrab 2898 . . . . . . 7  |-  ( z  e.  { x  e.  On  |  x  ~<_  A }  <->  ( z  e.  On  /\  z  ~<_  A ) )
17 breq1 4000 . . . . . . . 8  |-  ( x  =  y  ->  (
x  ~<_  A  <->  y  ~<_  A ) )
1817elrab 2898 . . . . . . 7  |-  ( y  e.  { x  e.  On  |  x  ~<_  A }  <->  ( y  e.  On  /\  y  ~<_  A ) )
1914, 16, 183imtr4g 263 . . . . . 6  |-  ( y  e.  z  ->  (
z  e.  { x  e.  On  |  x  ~<_  A }  ->  y  e.  { x  e.  On  |  x  ~<_  A } ) )
2019imp 420 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  On  |  x  ~<_  A } )  ->  y  e.  { x  e.  On  |  x  ~<_  A }
)
2120gen2 1541 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  On  |  x  ~<_  A }
)  ->  y  e.  { x  e.  On  |  x  ~<_  A } )
22 dftr2 4089 . . . 4  |-  ( Tr 
{ x  e.  On  |  x  ~<_  A }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  {
x  e.  On  |  x  ~<_  A } )  ->  y  e.  {
x  e.  On  |  x  ~<_  A } ) )
2321, 22mpbir 202 . . 3  |-  Tr  {
x  e.  On  |  x  ~<_  A }
24 ssrab2 3233 . . 3  |-  { x  e.  On  |  x  ~<_  A }  C_  On
25 ordon 4546 . . 3  |-  Ord  On
26 trssord 4381 . . 3  |-  ( ( Tr  { x  e.  On  |  x  ~<_  A }  /\  { x  e.  On  |  x  ~<_  A }  C_  On  /\  Ord  On )  ->  Ord  { x  e.  On  |  x  ~<_  A } )
2723, 24, 25, 26mp3an 1282 . 2  |-  Ord  {
x  e.  On  |  x  ~<_  A }
28 eqid 2258 . . . 4  |-  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  =  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
29 eqid 2258 . . . 4  |-  { <. s ,  t >.  |  E. w  e.  y  E. z  e.  y  (
( s  =  ( g `  w )  /\  t  =  ( g `  z ) )  /\  w  _E  z ) }  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( g `
 w )  /\  t  =  ( g `  z ) )  /\  w  _E  z ) }
3028, 29hartogslem2 7226 . . 3  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
31 elong 4372 . . 3  |-  ( { x  e.  On  |  x  ~<_  A }  e.  _V  ->  ( { x  e.  On  |  x  ~<_  A }  e.  On  <->  Ord  { x  e.  On  |  x  ~<_  A } ) )
3230, 31syl 17 . 2  |-  ( A  e.  V  ->  ( { x  e.  On  |  x  ~<_  A }  e.  On  <->  Ord  { x  e.  On  |  x  ~<_  A } ) )
3327, 32mpbiri 226 1  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939   A.wal 1532    = wceq 1619    e. wcel 1621   E.wrex 2519   {crab 2522   _Vcvv 2763    \ cdif 3124    C_ wss 3127   class class class wbr 3997   {copab 4050   Tr wtr 4087    _E cep 4275    _I cid 4276    We wwe 4323   Ord word 4363   Oncon0 4364    X. cxp 4659   dom cdm 4661    |` cres 4663   ` cfv 4673    ~<_ cdom 6829  OrdIsocoi 7192
This theorem is referenced by:  card2on  7236  harf  7242  harval  7244
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-iota 6225  df-riota 6272  df-recs 6356  df-en 6832  df-dom 6833  df-oi 7193
  Copyright terms: Public domain W3C validator