MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc Unicode version

Theorem hashbc 11393
Description: The binomial coefficient counts the number of subsets of a finite set of a given size. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashbc  |-  ( ( A  e.  Fin  /\  K  e.  ZZ )  ->  ( ( # `  A
)  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
Distinct variable groups:    x, A    x, K

Proof of Theorem hashbc
Dummy variables  j 
k  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5527 . . . . . 6  |-  ( w  =  (/)  ->  ( # `  w )  =  (
# `  (/) ) )
21oveq1d 5875 . . . . 5  |-  ( w  =  (/)  ->  ( (
# `  w )  _C  k )  =  ( ( # `  (/) )  _C  k ) )
3 pweq 3630 . . . . . . 7  |-  ( w  =  (/)  ->  ~P w  =  ~P (/) )
4 rabeq 2784 . . . . . . 7  |-  ( ~P w  =  ~P (/)  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } )
53, 4syl 15 . . . . . 6  |-  ( w  =  (/)  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } )
65fveq2d 5531 . . . . 5  |-  ( w  =  (/)  ->  ( # `  { x  e.  ~P w  |  ( # `  x
)  =  k } )  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) )
72, 6eqeq12d 2299 . . . 4  |-  ( w  =  (/)  ->  ( ( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) ) )
87ralbidv 2565 . . 3  |-  ( w  =  (/)  ->  ( A. k  e.  ZZ  (
( # `  w )  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  (/) )  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) ) )
9 fveq2 5527 . . . . . 6  |-  ( w  =  y  ->  ( # `
 w )  =  ( # `  y
) )
109oveq1d 5875 . . . . 5  |-  ( w  =  y  ->  (
( # `  w )  _C  k )  =  ( ( # `  y
)  _C  k ) )
11 pweq 3630 . . . . . . 7  |-  ( w  =  y  ->  ~P w  =  ~P y
)
12 rabeq 2784 . . . . . . 7  |-  ( ~P w  =  ~P y  ->  { x  e.  ~P w  |  ( # `  x
)  =  k }  =  { x  e. 
~P y  |  (
# `  x )  =  k } )
1311, 12syl 15 . . . . . 6  |-  ( w  =  y  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P y  |  ( # `  x
)  =  k } )
1413fveq2d 5531 . . . . 5  |-  ( w  =  y  ->  ( # `
 { x  e. 
~P w  |  (
# `  x )  =  k } )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } ) )
1510, 14eqeq12d 2299 . . . 4  |-  ( w  =  y  ->  (
( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  ( ( # `  y )  _C  k
)  =  ( # `  { x  e.  ~P y  |  ( # `  x
)  =  k } ) ) )
1615ralbidv 2565 . . 3  |-  ( w  =  y  ->  ( A. k  e.  ZZ  ( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  y
)  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } ) ) )
17 fveq2 5527 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( # `  w
)  =  ( # `  ( y  u.  {
z } ) ) )
1817oveq1d 5875 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( # `  w )  _C  k
)  =  ( (
# `  ( y  u.  { z } ) )  _C  k ) )
19 pweq 3630 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ~P w  =  ~P ( y  u. 
{ z } ) )
20 rabeq 2784 . . . . . . 7  |-  ( ~P w  =  ~P (
y  u.  { z } )  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P ( y  u.  {
z } )  |  ( # `  x
)  =  k } )
2119, 20syl 15 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  { x  e. 
~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P ( y  u.  {
z } )  |  ( # `  x
)  =  k } )
2221fveq2d 5531 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  =  ( # `  { x  e.  ~P ( y  u.  {
z } )  |  ( # `  x
)  =  k } ) )
2318, 22eqeq12d 2299 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( (
# `  w )  _C  k )  =  (
# `  { x  e.  ~P w  |  (
# `  x )  =  k } )  <-> 
( ( # `  (
y  u.  { z } ) )  _C  k )  =  (
# `  { x  e.  ~P ( y  u. 
{ z } )  |  ( # `  x
)  =  k } ) ) )
2423ralbidv 2565 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A. k  e.  ZZ  ( ( # `  w )  _C  k
)  =  ( # `  { x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  (
y  u.  { z } ) )  _C  k )  =  (
# `  { x  e.  ~P ( y  u. 
{ z } )  |  ( # `  x
)  =  k } ) ) )
25 fveq2 5527 . . . . . 6  |-  ( w  =  A  ->  ( # `
 w )  =  ( # `  A
) )
2625oveq1d 5875 . . . . 5  |-  ( w  =  A  ->  (
( # `  w )  _C  k )  =  ( ( # `  A
)  _C  k ) )
27 pweq 3630 . . . . . . 7  |-  ( w  =  A  ->  ~P w  =  ~P A
)
28 rabeq 2784 . . . . . . 7  |-  ( ~P w  =  ~P A  ->  { x  e.  ~P w  |  ( # `  x
)  =  k }  =  { x  e. 
~P A  |  (
# `  x )  =  k } )
2927, 28syl 15 . . . . . 6  |-  ( w  =  A  ->  { x  e.  ~P w  |  (
# `  x )  =  k }  =  { x  e.  ~P A  |  ( # `  x
)  =  k } )
3029fveq2d 5531 . . . . 5  |-  ( w  =  A  ->  ( # `
 { x  e. 
~P w  |  (
# `  x )  =  k } )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } ) )
3126, 30eqeq12d 2299 . . . 4  |-  ( w  =  A  ->  (
( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  ( ( # `  A )  _C  k
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  k } ) ) )
3231ralbidv 2565 . . 3  |-  ( w  =  A  ->  ( A. k  e.  ZZ  ( ( # `  w
)  _C  k )  =  ( # `  {
x  e.  ~P w  |  ( # `  x
)  =  k } )  <->  A. k  e.  ZZ  ( ( # `  A
)  _C  k )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } ) ) )
33 hash0 11357 . . . . . . . . . 10  |-  ( # `  (/) )  =  0
3433a1i 10 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  ( # `
 (/) )  =  0 )
35 elfz1eq 10809 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
3634, 35oveq12d 5878 . . . . . . . 8  |-  ( k  e.  ( 0 ... 0 )  ->  (
( # `  (/) )  _C  k )  =  ( 0  _C  0 ) )
37 0nn0 9982 . . . . . . . . 9  |-  0  e.  NN0
38 bcn0 11325 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
3937, 38ax-mp 8 . . . . . . . 8  |-  ( 0  _C  0 )  =  1
4036, 39syl6eq 2333 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  (
( # `  (/) )  _C  k )  =  1 )
41 pw0 3764 . . . . . . . . . 10  |-  ~P (/)  =  { (/)
}
4235eqcomd 2290 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... 0 )  ->  0  =  k )
4341raleqi 2742 . . . . . . . . . . . . 13  |-  ( A. x  e.  ~P  (/) ( # `  x )  =  k  <->  A. x  e.  { (/) }  ( # `  x
)  =  k )
44 0ex 4152 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
45 fveq2 5527 . . . . . . . . . . . . . . . 16  |-  ( x  =  (/)  ->  ( # `  x )  =  (
# `  (/) ) )
4645, 33syl6eq 2333 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  ( # `  x )  =  0 )
4746eqeq1d 2293 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( (
# `  x )  =  k  <->  0  =  k ) )
4844, 47ralsn 3676 . . . . . . . . . . . . 13  |-  ( A. x  e.  { (/) }  ( # `
 x )  =  k  <->  0  =  k )
4943, 48bitri 240 . . . . . . . . . . . 12  |-  ( A. x  e.  ~P  (/) ( # `  x )  =  k  <->  0  =  k )
5042, 49sylibr 203 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... 0 )  ->  A. x  e.  ~P  (/) ( # `  x
)  =  k )
51 rabid2 2719 . . . . . . . . . . 11  |-  ( ~P (/)  =  { x  e. 
~P (/)  |  ( # `  x )  =  k }  <->  A. x  e.  ~P  (/) ( # `  x
)  =  k )
5250, 51sylibr 203 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... 0 )  ->  ~P (/)  =  { x  e. 
~P (/)  |  ( # `  x )  =  k } )
5341, 52syl5reqr 2332 . . . . . . . . 9  |-  ( k  e.  ( 0 ... 0 )  ->  { x  e.  ~P (/)  |  ( # `
 x )  =  k }  =  { (/)
} )
5453fveq2d 5531 . . . . . . . 8  |-  ( k  e.  ( 0 ... 0 )  ->  ( # `
 { x  e. 
~P (/)  |  ( # `  x )  =  k } )  =  (
# `  { (/) } ) )
55 hashsng 11358 . . . . . . . . 9  |-  ( (/)  e.  _V  ->  ( # `  { (/)
} )  =  1 )
5644, 55ax-mp 8 . . . . . . . 8  |-  ( # `  { (/) } )  =  1
5754, 56syl6eq 2333 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  ( # `
 { x  e. 
~P (/)  |  ( # `  x )  =  k } )  =  1 )
5840, 57eqtr4d 2320 . . . . . 6  |-  ( k  e.  ( 0 ... 0 )  ->  (
( # `  (/) )  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) )
5958adantl 452 . . . . 5  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) )
6033oveq1i 5870 . . . . . 6  |-  ( (
# `  (/) )  _C  k )  =  ( 0  _C  k )
61 bcval3 11321 . . . . . . . 8  |-  ( ( 0  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
6237, 61mp3an1 1264 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
63 id 19 . . . . . . . . . . . . . 14  |-  ( 0  =  k  ->  0  =  k )
64 0z 10037 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
65 elfz3 10808 . . . . . . . . . . . . . . 15  |-  ( 0  e.  ZZ  ->  0  e.  ( 0 ... 0
) )
6664, 65ax-mp 8 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 ... 0
)
6763, 66syl6eqelr 2374 . . . . . . . . . . . . 13  |-  ( 0  =  k  ->  k  e.  ( 0 ... 0
) )
6867con3i 127 . . . . . . . . . . . 12  |-  ( -.  k  e.  ( 0 ... 0 )  ->  -.  0  =  k
)
6968adantl 452 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  -.  0  =  k )
7041raleqi 2742 . . . . . . . . . . . 12  |-  ( A. x  e.  ~P  (/)  -.  ( # `
 x )  =  k  <->  A. x  e.  { (/)
}  -.  ( # `  x )  =  k )
7147notbid 285 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( -.  ( # `  x
)  =  k  <->  -.  0  =  k ) )
7244, 71ralsn 3676 . . . . . . . . . . . 12  |-  ( A. x  e.  { (/) }  -.  ( # `  x )  =  k  <->  -.  0  =  k )
7370, 72bitri 240 . . . . . . . . . . 11  |-  ( A. x  e.  ~P  (/)  -.  ( # `
 x )  =  k  <->  -.  0  =  k )
7469, 73sylibr 203 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  A. x  e.  ~P  (/) 
-.  ( # `  x
)  =  k )
75 rabeq0 3478 . . . . . . . . . 10  |-  ( { x  e.  ~P (/)  |  (
# `  x )  =  k }  =  (/)  <->  A. x  e.  ~P  (/)  -.  ( # `
 x )  =  k )
7674, 75sylibr 203 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  { x  e. 
~P (/)  |  ( # `  x )  =  k }  =  (/) )
7776fveq2d 5531 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( # `  {
x  e.  ~P (/)  |  (
# `  x )  =  k } )  =  ( # `  (/) ) )
7877, 33syl6eq 2333 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( # `  {
x  e.  ~P (/)  |  (
# `  x )  =  k } )  =  0 )
7962, 78eqtr4d 2320 . . . . . 6  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) )
8060, 79syl5eq 2329 . . . . 5  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } ) )
8159, 80pm2.61dan 766 . . . 4  |-  ( k  e.  ZZ  ->  (
( # `  (/) )  _C  k )  =  (
# `  { x  e.  ~P (/)  |  ( # `
 x )  =  k } ) )
8281rgen 2610 . . 3  |-  A. k  e.  ZZ  ( ( # `  (/) )  _C  k
)  =  ( # `  { x  e.  ~P (/) 
|  ( # `  x
)  =  k } )
83 oveq2 5868 . . . . . 6  |-  ( k  =  j  ->  (
( # `  y )  _C  k )  =  ( ( # `  y
)  _C  j ) )
84 eqeq2 2294 . . . . . . . . 9  |-  ( k  =  j  ->  (
( # `  x )  =  k  <->  ( # `  x
)  =  j ) )
8584rabbidv 2782 . . . . . . . 8  |-  ( k  =  j  ->  { x  e.  ~P y  |  (
# `  x )  =  k }  =  { x  e.  ~P y  |  ( # `  x
)  =  j } )
86 fveq2 5527 . . . . . . . . . 10  |-  ( x  =  z  ->  ( # `
 x )  =  ( # `  z
) )
8786eqeq1d 2293 . . . . . . . . 9  |-  ( x  =  z  ->  (
( # `  x )  =  j  <->  ( # `  z
)  =  j ) )
8887cbvrabv 2789 . . . . . . . 8  |-  { x  e.  ~P y  |  (
# `  x )  =  j }  =  { z  e.  ~P y  |  ( # `  z
)  =  j }
8985, 88syl6eq 2333 . . . . . . 7  |-  ( k  =  j  ->  { x  e.  ~P y  |  (
# `  x )  =  k }  =  { z  e.  ~P y  |  ( # `  z
)  =  j } )
9089fveq2d 5531 . . . . . 6  |-  ( k  =  j  ->  ( # `
 { x  e. 
~P y  |  (
# `  x )  =  k } )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9183, 90eqeq12d 2299 . . . . 5  |-  ( k  =  j  ->  (
( ( # `  y
)  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } )  <->  ( ( # `  y )  _C  j
)  =  ( # `  { z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )
9291cbvralv 2766 . . . 4  |-  ( A. k  e.  ZZ  (
( # `  y )  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } )  <->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
93 simpll 730 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  -> 
y  e.  Fin )
94 simplr 731 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  ->  -.  z  e.  y
)
95 simprr 733 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  ->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9688fveq2i 5530 . . . . . . . . . 10  |-  ( # `  { x  e.  ~P y  |  ( # `  x
)  =  j } )  =  ( # `  { z  e.  ~P y  |  ( # `  z
)  =  j } )
9796eqeq2i 2295 . . . . . . . . 9  |-  ( ( ( # `  y
)  _C  j )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  j } )  <->  ( ( # `  y )  _C  j
)  =  ( # `  { z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9897ralbii 2569 . . . . . . . 8  |-  ( A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  j } )  <->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) )
9995, 98sylibr 203 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  ->  A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  j } ) )
100 simprl 732 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  -> 
k  e.  ZZ )
10193, 94, 99, 100hashbclem 11392 . . . . . 6  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( k  e.  ZZ  /\  A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } ) ) )  -> 
( ( # `  (
y  u.  { z } ) )  _C  k )  =  (
# `  { x  e.  ~P ( y  u. 
{ z } )  |  ( # `  x
)  =  k } ) )
102101expr 598 . . . . 5  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  k  e.  ZZ )  ->  ( A. j  e.  ZZ  ( ( # `  y
)  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } )  ->  ( ( # `
 ( y  u. 
{ z } ) )  _C  k )  =  ( # `  {
x  e.  ~P (
y  u.  { z } )  |  (
# `  x )  =  k } ) ) )
103102ralrimdva 2635 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( A. j  e.  ZZ  (
( # `  y )  _C  j )  =  ( # `  {
z  e.  ~P y  |  ( # `  z
)  =  j } )  ->  A. k  e.  ZZ  ( ( # `  ( y  u.  {
z } ) )  _C  k )  =  ( # `  {
x  e.  ~P (
y  u.  { z } )  |  (
# `  x )  =  k } ) ) )
10492, 103syl5bi 208 . . 3  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( A. k  e.  ZZ  (
( # `  y )  _C  k )  =  ( # `  {
x  e.  ~P y  |  ( # `  x
)  =  k } )  ->  A. k  e.  ZZ  ( ( # `  ( y  u.  {
z } ) )  _C  k )  =  ( # `  {
x  e.  ~P (
y  u.  { z } )  |  (
# `  x )  =  k } ) ) )
1058, 16, 24, 32, 82, 104findcard2s 7101 . 2  |-  ( A  e.  Fin  ->  A. k  e.  ZZ  ( ( # `  A )  _C  k
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  k } ) )
106 oveq2 5868 . . . 4  |-  ( k  =  K  ->  (
( # `  A )  _C  k )  =  ( ( # `  A
)  _C  K ) )
107 eqeq2 2294 . . . . . 6  |-  ( k  =  K  ->  (
( # `  x )  =  k  <->  ( # `  x
)  =  K ) )
108107rabbidv 2782 . . . . 5  |-  ( k  =  K  ->  { x  e.  ~P A  |  (
# `  x )  =  k }  =  { x  e.  ~P A  |  ( # `  x
)  =  K }
)
109108fveq2d 5531 . . . 4  |-  ( k  =  K  ->  ( # `
 { x  e. 
~P A  |  (
# `  x )  =  k } )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
110106, 109eqeq12d 2299 . . 3  |-  ( k  =  K  ->  (
( ( # `  A
)  _C  k )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } )  <->  ( ( # `  A )  _C  K
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  K }
) ) )
111110rspccva 2885 . 2  |-  ( ( A. k  e.  ZZ  ( ( # `  A
)  _C  k )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  k } )  /\  K  e.  ZZ )  ->  (
( # `  A )  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
112105, 111sylan 457 1  |-  ( ( A  e.  Fin  /\  K  e.  ZZ )  ->  ( ( # `  A
)  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   {crab 2549   _Vcvv 2790    u. cun 3152   (/)c0 3457   ~Pcpw 3627   {csn 3642   ` cfv 5257  (class class class)co 5860   Fincfn 6865   0cc0 8739   1c1 8740   NN0cn0 9967   ZZcz 10026   ...cfz 10784    _C cbc 11317   #chash 11339
This theorem is referenced by:  hashbc2  13055  sylow1lem1  14911  musum  20433  ballotlem1  23047  ballotlem2  23049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-fz 10785  df-seq 11049  df-fac 11291  df-bc 11318  df-hash 11340
  Copyright terms: Public domain W3C validator