MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbclem Unicode version

Theorem hashbclem 11392
Description: Lemma for hashbc 11393: inductive step. (Contributed by Mario Carneiro, 13-Jul-2014.)
Hypotheses
Ref Expression
hashbc.1  |-  ( ph  ->  A  e.  Fin )
hashbc.2  |-  ( ph  ->  -.  z  e.  A
)
hashbc.3  |-  ( ph  ->  A. j  e.  ZZ  ( ( # `  A
)  _C  j )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  j } ) )
hashbc.4  |-  ( ph  ->  K  e.  ZZ )
Assertion
Ref Expression
hashbclem  |-  ( ph  ->  ( ( # `  ( A  u.  { z } ) )  _C  K )  =  (
# `  { x  e.  ~P ( A  u.  { z } )  |  ( # `  x
)  =  K }
) )
Distinct variable groups:    x, j,
z, A    j, K, x    ph, x
Allowed substitution hints:    ph( z, j)    K( z)

Proof of Theorem hashbclem
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashbc.4 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
2 hashbc.3 . . . . 5  |-  ( ph  ->  A. j  e.  ZZ  ( ( # `  A
)  _C  j )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  j } ) )
3 oveq2 5868 . . . . . . 7  |-  ( j  =  K  ->  (
( # `  A )  _C  j )  =  ( ( # `  A
)  _C  K ) )
4 eqeq2 2294 . . . . . . . . 9  |-  ( j  =  K  ->  (
( # `  x )  =  j  <->  ( # `  x
)  =  K ) )
54rabbidv 2782 . . . . . . . 8  |-  ( j  =  K  ->  { x  e.  ~P A  |  (
# `  x )  =  j }  =  { x  e.  ~P A  |  ( # `  x
)  =  K }
)
65fveq2d 5531 . . . . . . 7  |-  ( j  =  K  ->  ( # `
 { x  e. 
~P A  |  (
# `  x )  =  j } )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
73, 6eqeq12d 2299 . . . . . 6  |-  ( j  =  K  ->  (
( ( # `  A
)  _C  j )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  j } )  <->  ( ( # `  A )  _C  K
)  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  K }
) ) )
87rspcv 2882 . . . . 5  |-  ( K  e.  ZZ  ->  ( A. j  e.  ZZ  ( ( # `  A
)  _C  j )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  j } )  ->  ( ( # `
 A )  _C  K )  =  (
# `  { x  e.  ~P A  |  (
# `  x )  =  K } ) ) )
91, 2, 8sylc 56 . . . 4  |-  ( ph  ->  ( ( # `  A
)  _C  K )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
) )
10 ssun1 3340 . . . . . . . . . . . . . 14  |-  A  C_  ( A  u.  { z } )
11 sspwb 4225 . . . . . . . . . . . . . 14  |-  ( A 
C_  ( A  u.  { z } )  <->  ~P A  C_ 
~P ( A  u.  { z } ) )
1210, 11mpbi 199 . . . . . . . . . . . . 13  |-  ~P A  C_ 
~P ( A  u.  { z } )
1312sseli 3178 . . . . . . . . . . . 12  |-  ( x  e.  ~P A  ->  x  e.  ~P ( A  u.  { z } ) )
1413adantl 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ~P A )  ->  x  e.  ~P ( A  u.  { z } ) )
15 hashbc.2 . . . . . . . . . . . 12  |-  ( ph  ->  -.  z  e.  A
)
16 elpwi 3635 . . . . . . . . . . . . 13  |-  ( x  e.  ~P A  ->  x  C_  A )
17 ssel 3176 . . . . . . . . . . . . . 14  |-  ( x 
C_  A  ->  (
z  e.  x  -> 
z  e.  A ) )
1817con3d 125 . . . . . . . . . . . . 13  |-  ( x 
C_  A  ->  ( -.  z  e.  A  ->  -.  z  e.  x
) )
1916, 18syl 15 . . . . . . . . . . . 12  |-  ( x  e.  ~P A  -> 
( -.  z  e.  A  ->  -.  z  e.  x ) )
2015, 19mpan9 455 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ~P A )  ->  -.  z  e.  x )
2114, 20jca 518 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ~P A )  ->  (
x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )
)
22 elpwi 3635 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~P ( A  u.  { z } )  ->  x  C_  ( A  u.  { z } ) )
23 uncom 3321 . . . . . . . . . . . . . . 15  |-  ( A  u.  { z } )  =  ( { z }  u.  A
)
2422, 23syl6sseq 3226 . . . . . . . . . . . . . 14  |-  ( x  e.  ~P ( A  u.  { z } )  ->  x  C_  ( { z }  u.  A ) )
2524adantr 451 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )  ->  x  C_  ( {
z }  u.  A
) )
26 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )  ->  -.  z  e.  x
)
27 disjsn 3695 . . . . . . . . . . . . . . 15  |-  ( ( x  i^i  { z } )  =  (/)  <->  -.  z  e.  x )
2826, 27sylibr 203 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )  ->  ( x  i^i  {
z } )  =  (/) )
29 disjssun 3514 . . . . . . . . . . . . . 14  |-  ( ( x  i^i  { z } )  =  (/)  ->  ( x  C_  ( { z }  u.  A )  <->  x  C_  A
) )
3028, 29syl 15 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )  ->  ( x  C_  ( { z }  u.  A )  <->  x  C_  A
) )
3125, 30mpbid 201 . . . . . . . . . . . 12  |-  ( ( x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )  ->  x  C_  A )
32 vex 2793 . . . . . . . . . . . . 13  |-  x  e. 
_V
3332elpw 3633 . . . . . . . . . . . 12  |-  ( x  e.  ~P A  <->  x  C_  A
)
3431, 33sylibr 203 . . . . . . . . . . 11  |-  ( ( x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )  ->  x  e.  ~P A
)
3534adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x
) )  ->  x  e.  ~P A )
3621, 35impbida 805 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ~P A 
<->  ( x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )
) )
3736anbi1d 685 . . . . . . . 8  |-  ( ph  ->  ( ( x  e. 
~P A  /\  ( # `
 x )  =  K )  <->  ( (
x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )  /\  ( # `  x
)  =  K ) ) )
38 anass 630 . . . . . . . 8  |-  ( ( ( x  e.  ~P ( A  u.  { z } )  /\  -.  z  e.  x )  /\  ( # `  x
)  =  K )  <-> 
( x  e.  ~P ( A  u.  { z } )  /\  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) ) )
3937, 38syl6bb 252 . . . . . . 7  |-  ( ph  ->  ( ( x  e. 
~P A  /\  ( # `
 x )  =  K )  <->  ( x  e.  ~P ( A  u.  { z } )  /\  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) ) ) )
4039abbidv 2399 . . . . . 6  |-  ( ph  ->  { x  |  ( x  e.  ~P A  /\  ( # `  x
)  =  K ) }  =  { x  |  ( x  e. 
~P ( A  u.  { z } )  /\  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) ) } )
41 df-rab 2554 . . . . . 6  |-  { x  e.  ~P A  |  (
# `  x )  =  K }  =  {
x  |  ( x  e.  ~P A  /\  ( # `  x )  =  K ) }
42 df-rab 2554 . . . . . 6  |-  { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x )  =  K ) }  =  {
x  |  ( x  e.  ~P ( A  u.  { z } )  /\  ( -.  z  e.  x  /\  ( # `  x )  =  K ) ) }
4340, 41, 423eqtr4g 2342 . . . . 5  |-  ( ph  ->  { x  e.  ~P A  |  ( # `  x
)  =  K }  =  { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) } )
4443fveq2d 5531 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  K }
)  =  ( # `  { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) } ) )
459, 44eqtrd 2317 . . 3  |-  ( ph  ->  ( ( # `  A
)  _C  K )  =  ( # `  {
x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) } ) )
46 peano2zm 10064 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
471, 46syl 15 . . . . 5  |-  ( ph  ->  ( K  -  1 )  e.  ZZ )
48 oveq2 5868 . . . . . . 7  |-  ( j  =  ( K  - 
1 )  ->  (
( # `  A )  _C  j )  =  ( ( # `  A
)  _C  ( K  -  1 ) ) )
49 eqeq2 2294 . . . . . . . . 9  |-  ( j  =  ( K  - 
1 )  ->  (
( # `  x )  =  j  <->  ( # `  x
)  =  ( K  -  1 ) ) )
5049rabbidv 2782 . . . . . . . 8  |-  ( j  =  ( K  - 
1 )  ->  { x  e.  ~P A  |  (
# `  x )  =  j }  =  { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } )
5150fveq2d 5531 . . . . . . 7  |-  ( j  =  ( K  - 
1 )  ->  ( # `
 { x  e. 
~P A  |  (
# `  x )  =  j } )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } ) )
5248, 51eqeq12d 2299 . . . . . 6  |-  ( j  =  ( K  - 
1 )  ->  (
( ( # `  A
)  _C  j )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  j } )  <->  ( ( # `  A )  _C  ( K  -  1 ) )  =  ( # `  { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } ) ) )
5352rspcv 2882 . . . . 5  |-  ( ( K  -  1 )  e.  ZZ  ->  ( A. j  e.  ZZ  ( ( # `  A
)  _C  j )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  j } )  ->  ( ( # `
 A )  _C  ( K  -  1 ) )  =  (
# `  { x  e.  ~P A  |  (
# `  x )  =  ( K  - 
1 ) } ) ) )
5447, 2, 53sylc 56 . . . 4  |-  ( ph  ->  ( ( # `  A
)  _C  ( K  -  1 ) )  =  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } ) )
55 hashbc.1 . . . . . . . 8  |-  ( ph  ->  A  e.  Fin )
56 pwfi 7153 . . . . . . . 8  |-  ( A  e.  Fin  <->  ~P A  e.  Fin )
5755, 56sylib 188 . . . . . . 7  |-  ( ph  ->  ~P A  e.  Fin )
58 rabexg 4166 . . . . . . 7  |-  ( ~P A  e.  Fin  ->  { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) }  e.  _V )
5957, 58syl 15 . . . . . 6  |-  ( ph  ->  { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) }  e.  _V )
60 snfi 6943 . . . . . . . . . 10  |-  { z }  e.  Fin
61 unfi 7126 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  { z }  e.  Fin )  ->  ( A  u.  { z } )  e. 
Fin )
6255, 60, 61sylancl 643 . . . . . . . . 9  |-  ( ph  ->  ( A  u.  {
z } )  e. 
Fin )
63 pwfi 7153 . . . . . . . . 9  |-  ( ( A  u.  { z } )  e.  Fin  <->  ~P ( A  u.  { z } )  e.  Fin )
6462, 63sylib 188 . . . . . . . 8  |-  ( ph  ->  ~P ( A  u.  { z } )  e. 
Fin )
65 ssrab2 3260 . . . . . . . 8  |-  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) }  C_  ~P ( A  u.  { z } )
66 ssfi 7085 . . . . . . . 8  |-  ( ( ~P ( A  u.  { z } )  e. 
Fin  /\  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) }  C_  ~P ( A  u.  { z } ) )  ->  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) }  e.  Fin )
6764, 65, 66sylancl 643 . . . . . . 7  |-  ( ph  ->  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) }  e.  Fin )
68 elex 2798 . . . . . . 7  |-  ( { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) }  e.  Fin  ->  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) }  e.  _V )
6967, 68syl 15 . . . . . 6  |-  ( ph  ->  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) }  e.  _V )
70 fveq2 5527 . . . . . . . . 9  |-  ( x  =  u  ->  ( # `
 x )  =  ( # `  u
) )
7170eqeq1d 2293 . . . . . . . 8  |-  ( x  =  u  ->  (
( # `  x )  =  ( K  - 
1 )  <->  ( # `  u
)  =  ( K  -  1 ) ) )
7271elrab 2925 . . . . . . 7  |-  ( u  e.  { x  e. 
~P A  |  (
# `  x )  =  ( K  - 
1 ) }  <->  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )
73 elpwi 3635 . . . . . . . . . . . 12  |-  ( u  e.  ~P A  ->  u  C_  A )
7473ad2antrl 708 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  ->  u  C_  A )
75 unss1 3346 . . . . . . . . . . 11  |-  ( u 
C_  A  ->  (
u  u.  { z } )  C_  ( A  u.  { z } ) )
7674, 75syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( u  u.  {
z } )  C_  ( A  u.  { z } ) )
77 vex 2793 . . . . . . . . . . . 12  |-  u  e. 
_V
78 snex 4218 . . . . . . . . . . . 12  |-  { z }  e.  _V
7977, 78unex 4520 . . . . . . . . . . 11  |-  ( u  u.  { z } )  e.  _V
8079elpw 3633 . . . . . . . . . 10  |-  ( ( u  u.  { z } )  e.  ~P ( A  u.  { z } )  <->  ( u  u.  { z } ) 
C_  ( A  u.  { z } ) )
8176, 80sylibr 203 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( u  u.  {
z } )  e. 
~P ( A  u.  { z } ) )
8255adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  ->  A  e.  Fin )
83 ssfi 7085 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  u  C_  A )  ->  u  e.  Fin )
8482, 74, 83syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  ->  u  e.  Fin )
8560a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  ->  { z }  e.  Fin )
8615adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  ->  -.  z  e.  A
)
8774sseld 3181 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( z  e.  u  ->  z  e.  A ) )
8886, 87mtod 168 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  ->  -.  z  e.  u
)
89 disjsn 3695 . . . . . . . . . . . . 13  |-  ( ( u  i^i  { z } )  =  (/)  <->  -.  z  e.  u )
9088, 89sylibr 203 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( u  i^i  {
z } )  =  (/) )
91 hashun 11366 . . . . . . . . . . . 12  |-  ( ( u  e.  Fin  /\  { z }  e.  Fin  /\  ( u  i^i  {
z } )  =  (/) )  ->  ( # `  ( u  u.  {
z } ) )  =  ( ( # `  u )  +  (
# `  { z } ) ) )
9284, 85, 90, 91syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( # `  ( u  u.  { z } ) )  =  ( ( # `  u
)  +  ( # `  { z } ) ) )
93 simprr 733 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( # `  u )  =  ( K  - 
1 ) )
94 vex 2793 . . . . . . . . . . . . . 14  |-  z  e. 
_V
95 hashsng 11358 . . . . . . . . . . . . . 14  |-  ( z  e.  _V  ->  ( # `
 { z } )  =  1 )
9694, 95ax-mp 8 . . . . . . . . . . . . 13  |-  ( # `  { z } )  =  1
9796a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( # `  { z } )  =  1 )
9893, 97oveq12d 5878 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( ( # `  u
)  +  ( # `  { z } ) )  =  ( ( K  -  1 )  +  1 ) )
991adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  ->  K  e.  ZZ )
10099zcnd 10120 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  ->  K  e.  CC )
101 ax-1cn 8797 . . . . . . . . . . . 12  |-  1  e.  CC
102 npcan 9062 . . . . . . . . . . . 12  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  - 
1 )  +  1 )  =  K )
103100, 101, 102sylancl 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( ( K  - 
1 )  +  1 )  =  K )
10492, 98, 1033eqtrd 2321 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( # `  ( u  u.  { z } ) )  =  K )
105 ssun2 3341 . . . . . . . . . . 11  |-  { z }  C_  ( u  u.  { z } )
10694snss 3750 . . . . . . . . . . 11  |-  ( z  e.  ( u  u. 
{ z } )  <->  { z }  C_  ( u  u.  { z } ) )
107105, 106mpbir 200 . . . . . . . . . 10  |-  z  e.  ( u  u.  {
z } )
108104, 107jctil 523 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( z  e.  ( u  u.  { z } )  /\  ( # `
 ( u  u. 
{ z } ) )  =  K ) )
109 eleq2 2346 . . . . . . . . . . 11  |-  ( x  =  ( u  u. 
{ z } )  ->  ( z  e.  x  <->  z  e.  ( u  u.  { z } ) ) )
110 fveq2 5527 . . . . . . . . . . . 12  |-  ( x  =  ( u  u. 
{ z } )  ->  ( # `  x
)  =  ( # `  ( u  u.  {
z } ) ) )
111110eqeq1d 2293 . . . . . . . . . . 11  |-  ( x  =  ( u  u. 
{ z } )  ->  ( ( # `  x )  =  K  <-> 
( # `  ( u  u.  { z } ) )  =  K ) )
112109, 111anbi12d 691 . . . . . . . . . 10  |-  ( x  =  ( u  u. 
{ z } )  ->  ( ( z  e.  x  /\  ( # `
 x )  =  K )  <->  ( z  e.  ( u  u.  {
z } )  /\  ( # `  ( u  u.  { z } ) )  =  K ) ) )
113112elrab 2925 . . . . . . . . 9  |-  ( ( u  u.  { z } )  e.  {
x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) }  <-> 
( ( u  u. 
{ z } )  e.  ~P ( A  u.  { z } )  /\  ( z  e.  ( u  u. 
{ z } )  /\  ( # `  (
u  u.  { z } ) )  =  K ) ) )
11481, 108, 113sylanbrc 645 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) ) )  -> 
( u  u.  {
z } )  e. 
{ x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) } )
115114ex 423 . . . . . . 7  |-  ( ph  ->  ( ( u  e. 
~P A  /\  ( # `
 u )  =  ( K  -  1 ) )  ->  (
u  u.  { z } )  e.  {
x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) } ) )
11672, 115syl5bi 208 . . . . . 6  |-  ( ph  ->  ( u  e.  {
x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) }  ->  ( u  u. 
{ z } )  e.  { x  e. 
~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) )
117 eleq2 2346 . . . . . . . . 9  |-  ( x  =  v  ->  (
z  e.  x  <->  z  e.  v ) )
118 fveq2 5527 . . . . . . . . . 10  |-  ( x  =  v  ->  ( # `
 x )  =  ( # `  v
) )
119118eqeq1d 2293 . . . . . . . . 9  |-  ( x  =  v  ->  (
( # `  x )  =  K  <->  ( # `  v
)  =  K ) )
120117, 119anbi12d 691 . . . . . . . 8  |-  ( x  =  v  ->  (
( z  e.  x  /\  ( # `  x
)  =  K )  <-> 
( z  e.  v  /\  ( # `  v
)  =  K ) ) )
121120elrab 2925 . . . . . . 7  |-  ( v  e.  { x  e. 
~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) }  <->  ( v  e. 
~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )
122 elpwi 3635 . . . . . . . . . . . . 13  |-  ( v  e.  ~P ( A  u.  { z } )  ->  v  C_  ( A  u.  { z } ) )
123122ad2antrl 708 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  v  C_  ( A  u.  {
z } ) )
124123, 23syl6sseq 3226 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  v  C_  ( { z }  u.  A ) )
125 ssundif 3539 . . . . . . . . . . 11  |-  ( v 
C_  ( { z }  u.  A )  <-> 
( v  \  {
z } )  C_  A )
126124, 125sylib 188 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
v  \  { z } )  C_  A
)
127 vex 2793 . . . . . . . . . . . 12  |-  v  e. 
_V
128 difexg 4164 . . . . . . . . . . . 12  |-  ( v  e.  _V  ->  (
v  \  { z } )  e.  _V )
129127, 128ax-mp 8 . . . . . . . . . . 11  |-  ( v 
\  { z } )  e.  _V
130129elpw 3633 . . . . . . . . . 10  |-  ( ( v  \  { z } )  e.  ~P A 
<->  ( v  \  {
z } )  C_  A )
131126, 130sylibr 203 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
v  \  { z } )  e.  ~P A )
13255adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  A  e.  Fin )
133 ssfi 7085 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Fin  /\  ( v  \  {
z } )  C_  A )  ->  (
v  \  { z } )  e.  Fin )
134132, 126, 133syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
v  \  { z } )  e.  Fin )
135 hashcl 11352 . . . . . . . . . . . . 13  |-  ( ( v  \  { z } )  e.  Fin  ->  ( # `  (
v  \  { z } ) )  e. 
NN0 )
136134, 135syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  ( # `
 ( v  \  { z } ) )  e.  NN0 )
137136nn0cnd 10022 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  ( # `
 ( v  \  { z } ) )  e.  CC )
138 pncan 9059 . . . . . . . . . . 11  |-  ( ( ( # `  (
v  \  { z } ) )  e.  CC  /\  1  e.  CC )  ->  (
( ( # `  (
v  \  { z } ) )  +  1 )  -  1 )  =  ( # `  ( v  \  {
z } ) ) )
139137, 101, 138sylancl 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
( ( # `  (
v  \  { z } ) )  +  1 )  -  1 )  =  ( # `  ( v  \  {
z } ) ) )
140 undif1 3531 . . . . . . . . . . . . . 14  |-  ( ( v  \  { z } )  u.  {
z } )  =  ( v  u.  {
z } )
141 simprrl 740 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  z  e.  v )
142141snssd 3762 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  { z }  C_  v )
143 ssequn2 3350 . . . . . . . . . . . . . . 15  |-  ( { z }  C_  v  <->  ( v  u.  { z } )  =  v )
144142, 143sylib 188 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
v  u.  { z } )  =  v )
145140, 144syl5eq 2329 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
( v  \  {
z } )  u. 
{ z } )  =  v )
146145fveq2d 5531 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  ( # `
 ( ( v 
\  { z } )  u.  { z } ) )  =  ( # `  v
) )
14760a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  { z }  e.  Fin )
148 incom 3363 . . . . . . . . . . . . . . . 16  |-  ( ( v  \  { z } )  i^i  {
z } )  =  ( { z }  i^i  ( v  \  { z } ) )
149 disjdif 3528 . . . . . . . . . . . . . . . 16  |-  ( { z }  i^i  (
v  \  { z } ) )  =  (/)
150148, 149eqtri 2305 . . . . . . . . . . . . . . 15  |-  ( ( v  \  { z } )  i^i  {
z } )  =  (/)
151150a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
( v  \  {
z } )  i^i 
{ z } )  =  (/) )
152 hashun 11366 . . . . . . . . . . . . . 14  |-  ( ( ( v  \  {
z } )  e. 
Fin  /\  { z }  e.  Fin  /\  (
( v  \  {
z } )  i^i 
{ z } )  =  (/) )  ->  ( # `
 ( ( v 
\  { z } )  u.  { z } ) )  =  ( ( # `  (
v  \  { z } ) )  +  ( # `  {
z } ) ) )
153134, 147, 151, 152syl3anc 1182 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  ( # `
 ( ( v 
\  { z } )  u.  { z } ) )  =  ( ( # `  (
v  \  { z } ) )  +  ( # `  {
z } ) ) )
15496oveq2i 5871 . . . . . . . . . . . . 13  |-  ( (
# `  ( v  \  { z } ) )  +  ( # `  { z } ) )  =  ( (
# `  ( v  \  { z } ) )  +  1 )
155153, 154syl6eq 2333 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  ( # `
 ( ( v 
\  { z } )  u.  { z } ) )  =  ( ( # `  (
v  \  { z } ) )  +  1 ) )
156 simprrr 741 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  ( # `
 v )  =  K )
157146, 155, 1563eqtr3d 2325 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
( # `  ( v 
\  { z } ) )  +  1 )  =  K )
158157oveq1d 5875 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
( ( # `  (
v  \  { z } ) )  +  1 )  -  1 )  =  ( K  -  1 ) )
159139, 158eqtr3d 2319 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  ( # `
 ( v  \  { z } ) )  =  ( K  -  1 ) )
160 fveq2 5527 . . . . . . . . . . 11  |-  ( x  =  ( v  \  { z } )  ->  ( # `  x
)  =  ( # `  ( v  \  {
z } ) ) )
161160eqeq1d 2293 . . . . . . . . . 10  |-  ( x  =  ( v  \  { z } )  ->  ( ( # `  x )  =  ( K  -  1 )  <-> 
( # `  ( v 
\  { z } ) )  =  ( K  -  1 ) ) )
162161elrab 2925 . . . . . . . . 9  |-  ( ( v  \  { z } )  e.  {
x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) }  <-> 
( ( v  \  { z } )  e.  ~P A  /\  ( # `  ( v 
\  { z } ) )  =  ( K  -  1 ) ) )
163131, 159, 162sylanbrc 645 . . . . . . . 8  |-  ( (
ph  /\  ( v  e.  ~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) )  ->  (
v  \  { z } )  e.  {
x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } )
164163ex 423 . . . . . . 7  |-  ( ph  ->  ( ( v  e. 
~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) )  ->  ( v  \  { z } )  e.  { x  e. 
~P A  |  (
# `  x )  =  ( K  - 
1 ) } ) )
165121, 164syl5bi 208 . . . . . 6  |-  ( ph  ->  ( v  e.  {
x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) }  ->  ( v  \  { z } )  e.  { x  e. 
~P A  |  (
# `  x )  =  ( K  - 
1 ) } ) )
16672, 121anbi12i 678 . . . . . . 7  |-  ( ( u  e.  { x  e.  ~P A  |  (
# `  x )  =  ( K  - 
1 ) }  /\  v  e.  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } )  <->  ( (
u  e.  ~P A  /\  ( # `  u
)  =  ( K  -  1 ) )  /\  ( v  e. 
~P ( A  u.  { z } )  /\  ( z  e.  v  /\  ( # `  v
)  =  K ) ) ) )
167 simp3rl 1028 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) )  /\  (
v  e.  ~P ( A  u.  { z } )  /\  (
z  e.  v  /\  ( # `  v )  =  K ) ) )  ->  z  e.  v )
168167snssd 3762 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) )  /\  (
v  e.  ~P ( A  u.  { z } )  /\  (
z  e.  v  /\  ( # `  v )  =  K ) ) )  ->  { z }  C_  v )
169 incom 3363 . . . . . . . . . . . 12  |-  ( { z }  i^i  u
)  =  ( u  i^i  { z } )
170903adant3 975 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) )  /\  (
v  e.  ~P ( A  u.  { z } )  /\  (
z  e.  v  /\  ( # `  v )  =  K ) ) )  ->  ( u  i^i  { z } )  =  (/) )
171169, 170syl5eq 2329 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) )  /\  (
v  e.  ~P ( A  u.  { z } )  /\  (
z  e.  v  /\  ( # `  v )  =  K ) ) )  ->  ( {
z }  i^i  u
)  =  (/) )
172 uneqdifeq 3544 . . . . . . . . . . 11  |-  ( ( { z }  C_  v  /\  ( { z }  i^i  u )  =  (/) )  ->  (
( { z }  u.  u )  =  v  <->  ( v  \  { z } )  =  u ) )
173168, 171, 172syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) )  /\  (
v  e.  ~P ( A  u.  { z } )  /\  (
z  e.  v  /\  ( # `  v )  =  K ) ) )  ->  ( ( { z }  u.  u )  =  v  <-> 
( v  \  {
z } )  =  u ) )
174173bicomd 192 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) )  /\  (
v  e.  ~P ( A  u.  { z } )  /\  (
z  e.  v  /\  ( # `  v )  =  K ) ) )  ->  ( (
v  \  { z } )  =  u  <-> 
( { z }  u.  u )  =  v ) )
175 eqcom 2287 . . . . . . . . 9  |-  ( u  =  ( v  \  { z } )  <-> 
( v  \  {
z } )  =  u )
176 eqcom 2287 . . . . . . . . . 10  |-  ( v  =  ( u  u. 
{ z } )  <-> 
( u  u.  {
z } )  =  v )
177 uncom 3321 . . . . . . . . . . 11  |-  ( u  u.  { z } )  =  ( { z }  u.  u
)
178177eqeq1i 2292 . . . . . . . . . 10  |-  ( ( u  u.  { z } )  =  v  <-> 
( { z }  u.  u )  =  v )
179176, 178bitri 240 . . . . . . . . 9  |-  ( v  =  ( u  u. 
{ z } )  <-> 
( { z }  u.  u )  =  v )
180174, 175, 1793bitr4g 279 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ~P A  /\  ( # `
 u )  =  ( K  -  1 ) )  /\  (
v  e.  ~P ( A  u.  { z } )  /\  (
z  e.  v  /\  ( # `  v )  =  K ) ) )  ->  ( u  =  ( v  \  { z } )  <-> 
v  =  ( u  u.  { z } ) ) )
1811803expib 1154 . . . . . . 7  |-  ( ph  ->  ( ( ( u  e.  ~P A  /\  ( # `  u )  =  ( K  - 
1 ) )  /\  ( v  e.  ~P ( A  u.  { z } )  /\  (
z  e.  v  /\  ( # `  v )  =  K ) ) )  ->  ( u  =  ( v  \  { z } )  <-> 
v  =  ( u  u.  { z } ) ) ) )
182166, 181syl5bi 208 . . . . . 6  |-  ( ph  ->  ( ( u  e. 
{ x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) }  /\  v  e.  {
x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) } )  ->  ( u  =  ( v  \  { z } )  <-> 
v  =  ( u  u.  { z } ) ) ) )
18359, 69, 116, 165, 182en3d 6900 . . . . 5  |-  ( ph  ->  { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } 
~~  { x  e. 
~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } )
184 ssrab2 3260 . . . . . . 7  |-  { x  e.  ~P A  |  (
# `  x )  =  ( K  - 
1 ) }  C_  ~P A
185 ssfi 7085 . . . . . . 7  |-  ( ( ~P A  e.  Fin  /\ 
{ x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } 
C_  ~P A )  ->  { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) }  e.  Fin )
18657, 184, 185sylancl 643 . . . . . 6  |-  ( ph  ->  { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) }  e.  Fin )
187 hashen 11348 . . . . . 6  |-  ( ( { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) }  e.  Fin  /\  {
x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) }  e.  Fin )  -> 
( ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } )  =  ( # `  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) } )  <->  { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } 
~~  { x  e. 
~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) )
188186, 67, 187syl2anc 642 . . . . 5  |-  ( ph  ->  ( ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } )  =  ( # `  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) } )  <->  { x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } 
~~  { x  e. 
~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) )
189183, 188mpbird 223 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  ~P A  |  ( # `  x
)  =  ( K  -  1 ) } )  =  ( # `  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) } ) )
19054, 189eqtrd 2317 . . 3  |-  ( ph  ->  ( ( # `  A
)  _C  ( K  -  1 ) )  =  ( # `  {
x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) } ) )
19145, 190oveq12d 5878 . 2  |-  ( ph  ->  ( ( ( # `  A )  _C  K
)  +  ( (
# `  A )  _C  ( K  -  1 ) ) )  =  ( ( # `  {
x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) } )  +  (
# `  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) ) )
19260a1i 10 . . . . . 6  |-  ( ph  ->  { z }  e.  Fin )
193 disjsn 3695 . . . . . . 7  |-  ( ( A  i^i  { z } )  =  (/)  <->  -.  z  e.  A )
19415, 193sylibr 203 . . . . . 6  |-  ( ph  ->  ( A  i^i  {
z } )  =  (/) )
195 hashun 11366 . . . . . 6  |-  ( ( A  e.  Fin  /\  { z }  e.  Fin  /\  ( A  i^i  {
z } )  =  (/) )  ->  ( # `  ( A  u.  {
z } ) )  =  ( ( # `  A )  +  (
# `  { z } ) ) )
19655, 192, 194, 195syl3anc 1182 . . . . 5  |-  ( ph  ->  ( # `  ( A  u.  { z } ) )  =  ( ( # `  A
)  +  ( # `  { z } ) ) )
19796oveq2i 5871 . . . . 5  |-  ( (
# `  A )  +  ( # `  {
z } ) )  =  ( ( # `  A )  +  1 )
198196, 197syl6eq 2333 . . . 4  |-  ( ph  ->  ( # `  ( A  u.  { z } ) )  =  ( ( # `  A
)  +  1 ) )
199198oveq1d 5875 . . 3  |-  ( ph  ->  ( ( # `  ( A  u.  { z } ) )  _C  K )  =  ( ( ( # `  A
)  +  1 )  _C  K ) )
200 hashcl 11352 . . . . 5  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
20155, 200syl 15 . . . 4  |-  ( ph  ->  ( # `  A
)  e.  NN0 )
202 bcpasc 11335 . . . 4  |-  ( ( ( # `  A
)  e.  NN0  /\  K  e.  ZZ )  ->  ( ( ( # `  A )  _C  K
)  +  ( (
# `  A )  _C  ( K  -  1 ) ) )  =  ( ( ( # `  A )  +  1 )  _C  K ) )
203201, 1, 202syl2anc 642 . . 3  |-  ( ph  ->  ( ( ( # `  A )  _C  K
)  +  ( (
# `  A )  _C  ( K  -  1 ) ) )  =  ( ( ( # `  A )  +  1 )  _C  K ) )
204199, 203eqtr4d 2320 . 2  |-  ( ph  ->  ( ( # `  ( A  u.  { z } ) )  _C  K )  =  ( ( ( # `  A
)  _C  K )  +  ( ( # `  A )  _C  ( K  -  1 ) ) ) )
205 pm2.1 406 . . . . . . . . 9  |-  ( -.  z  e.  x  \/  z  e.  x )
206205biantrur 492 . . . . . . . 8  |-  ( (
# `  x )  =  K  <->  ( ( -.  z  e.  x  \/  z  e.  x )  /\  ( # `  x
)  =  K ) )
207 andir 838 . . . . . . . 8  |-  ( ( ( -.  z  e.  x  \/  z  e.  x )  /\  ( # `
 x )  =  K )  <->  ( ( -.  z  e.  x  /\  ( # `  x
)  =  K )  \/  ( z  e.  x  /\  ( # `  x )  =  K ) ) )
208206, 207bitri 240 . . . . . . 7  |-  ( (
# `  x )  =  K  <->  ( ( -.  z  e.  x  /\  ( # `  x )  =  K )  \/  ( z  e.  x  /\  ( # `  x
)  =  K ) ) )
209208a1i 10 . . . . . 6  |-  ( x  e.  ~P ( A  u.  { z } )  ->  ( ( # `
 x )  =  K  <->  ( ( -.  z  e.  x  /\  ( # `  x )  =  K )  \/  ( z  e.  x  /\  ( # `  x
)  =  K ) ) ) )
210209rabbiia 2780 . . . . 5  |-  { x  e.  ~P ( A  u.  { z } )  |  ( # `  x
)  =  K }  =  { x  e.  ~P ( A  u.  { z } )  |  ( ( -.  z  e.  x  /\  ( # `  x )  =  K )  \/  ( z  e.  x  /\  ( # `
 x )  =  K ) ) }
211 unrab 3441 . . . . 5  |-  ( { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  u.  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } )  =  {
x  e.  ~P ( A  u.  { z } )  |  ( ( -.  z  e.  x  /\  ( # `  x )  =  K )  \/  ( z  e.  x  /\  ( # `
 x )  =  K ) ) }
212210, 211eqtr4i 2308 . . . 4  |-  { x  e.  ~P ( A  u.  { z } )  |  ( # `  x
)  =  K }  =  ( { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x )  =  K ) }  u.  {
x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) } )
213212fveq2i 5530 . . 3  |-  ( # `  { x  e.  ~P ( A  u.  { z } )  |  (
# `  x )  =  K } )  =  ( # `  ( { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  u.  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) )
214 ssrab2 3260 . . . . 5  |-  { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x )  =  K ) }  C_  ~P ( A  u.  { z } )
215 ssfi 7085 . . . . 5  |-  ( ( ~P ( A  u.  { z } )  e. 
Fin  /\  { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x )  =  K ) }  C_  ~P ( A  u.  { z } ) )  ->  { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  e.  Fin )
21664, 214, 215sylancl 643 . . . 4  |-  ( ph  ->  { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  e.  Fin )
217 inrab 3442 . . . . . 6  |-  ( { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  i^i  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } )  =  {
x  e.  ~P ( A  u.  { z } )  |  ( ( -.  z  e.  x  /\  ( # `  x )  =  K )  /\  ( z  e.  x  /\  ( # `
 x )  =  K ) ) }
218 simprl 732 . . . . . . . . 9  |-  ( ( ( -.  z  e.  x  /\  ( # `  x )  =  K )  /\  ( z  e.  x  /\  ( # `
 x )  =  K ) )  -> 
z  e.  x )
219 simpll 730 . . . . . . . . 9  |-  ( ( ( -.  z  e.  x  /\  ( # `  x )  =  K )  /\  ( z  e.  x  /\  ( # `
 x )  =  K ) )  ->  -.  z  e.  x
)
220218, 219pm2.65i 165 . . . . . . . 8  |-  -.  (
( -.  z  e.  x  /\  ( # `  x )  =  K )  /\  ( z  e.  x  /\  ( # `
 x )  =  K ) )
221220rgenw 2612 . . . . . . 7  |-  A. x  e.  ~P  ( A  u.  { z } )  -.  ( ( -.  z  e.  x  /\  ( # `
 x )  =  K )  /\  (
z  e.  x  /\  ( # `  x )  =  K ) )
222 rabeq0 3478 . . . . . . 7  |-  ( { x  e.  ~P ( A  u.  { z } )  |  ( ( -.  z  e.  x  /\  ( # `  x )  =  K )  /\  ( z  e.  x  /\  ( # `
 x )  =  K ) ) }  =  (/)  <->  A. x  e.  ~P  ( A  u.  { z } )  -.  (
( -.  z  e.  x  /\  ( # `  x )  =  K )  /\  ( z  e.  x  /\  ( # `
 x )  =  K ) ) )
223221, 222mpbir 200 . . . . . 6  |-  { x  e.  ~P ( A  u.  { z } )  |  ( ( -.  z  e.  x  /\  ( # `
 x )  =  K )  /\  (
z  e.  x  /\  ( # `  x )  =  K ) ) }  =  (/)
224217, 223eqtri 2305 . . . . 5  |-  ( { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  i^i  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } )  =  (/)
225224a1i 10 . . . 4  |-  ( ph  ->  ( { x  e. 
~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x )  =  K ) }  i^i  {
x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) } )  =  (/) )
226 hashun 11366 . . . 4  |-  ( ( { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  e.  Fin  /\  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x )  =  K ) }  e.  Fin  /\  ( { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  i^i  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } )  =  (/) )  ->  ( # `  ( { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  u.  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) )  =  ( ( # `  {
x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) } )  +  (
# `  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) ) )
227216, 67, 225, 226syl3anc 1182 . . 3  |-  ( ph  ->  ( # `  ( { x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) }  u.  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) )  =  ( ( # `  {
x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) } )  +  (
# `  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) ) )
228213, 227syl5eq 2329 . 2  |-  ( ph  ->  ( # `  {
x  e.  ~P ( A  u.  { z } )  |  (
# `  x )  =  K } )  =  ( ( # `  {
x  e.  ~P ( A  u.  { z } )  |  ( -.  z  e.  x  /\  ( # `  x
)  =  K ) } )  +  (
# `  { x  e.  ~P ( A  u.  { z } )  |  ( z  e.  x  /\  ( # `  x
)  =  K ) } ) ) )
229191, 204, 2283eqtr4d 2327 1  |-  ( ph  ->  ( ( # `  ( A  u.  { z } ) )  _C  K )  =  (
# `  { x  e.  ~P ( A  u.  { z } )  |  ( # `  x
)  =  K }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   {cab 2271   A.wral 2545   {crab 2549   _Vcvv 2790    \ cdif 3151    u. cun 3152    i^i cin 3153    C_ wss 3154   (/)c0 3457   ~Pcpw 3627   {csn 3642   class class class wbr 4025   ` cfv 5257  (class class class)co 5860    ~~ cen 6862   Fincfn 6865   CCcc 8737   1c1 8740    + caddc 8742    - cmin 9039   NN0cn0 9967   ZZcz 10026    _C cbc 11317   #chash 11339
This theorem is referenced by:  hashbc  11393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-fz 10785  df-seq 11049  df-fac 11291  df-bc 11318  df-hash 11340
  Copyright terms: Public domain W3C validator