MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfacen Unicode version

Theorem hashfacen 11392
Description: The number of bijections between two sets is a cardinal invariant. (Contributed by Mario Carneiro, 21-Jan-2015.)
Assertion
Ref Expression
hashfacen  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  {
f  |  f : B -1-1-onto-> D } )
Distinct variable groups:    A, f    B, f    C, f    D, f

Proof of Theorem hashfacen
Dummy variables  g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6871 . 2  |-  ( A 
~~  B  <->  E. g 
g : A -1-1-onto-> B )
2 bren 6871 . 2  |-  ( C 
~~  D  <->  E. h  h : C -1-1-onto-> D )
3 eeanv 1854 . . 3  |-  ( E. g E. h ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  <->  ( E. g  g : A -1-1-onto-> B  /\  E. h  h : C -1-1-onto-> D ) )
4 f1of 5472 . . . . . . . 8  |-  ( f : A -1-1-onto-> C  ->  f : A
--> C )
5 f1odm 5476 . . . . . . . . . 10  |-  ( h : C -1-1-onto-> D  ->  dom  h  =  C )
6 vex 2791 . . . . . . . . . . 11  |-  h  e. 
_V
76dmex 4941 . . . . . . . . . 10  |-  dom  h  e.  _V
85, 7syl6eqelr 2372 . . . . . . . . 9  |-  ( h : C -1-1-onto-> D  ->  C  e.  _V )
9 f1odm 5476 . . . . . . . . . 10  |-  ( g : A -1-1-onto-> B  ->  dom  g  =  A )
10 vex 2791 . . . . . . . . . . 11  |-  g  e. 
_V
1110dmex 4941 . . . . . . . . . 10  |-  dom  g  e.  _V
129, 11syl6eqelr 2372 . . . . . . . . 9  |-  ( g : A -1-1-onto-> B  ->  A  e.  _V )
13 elmapg 6785 . . . . . . . . 9  |-  ( ( C  e.  _V  /\  A  e.  _V )  ->  ( f  e.  ( C  ^m  A )  <-> 
f : A --> C ) )
148, 12, 13syl2anr 464 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
f  e.  ( C  ^m  A )  <->  f : A
--> C ) )
154, 14syl5ibr 212 . . . . . . 7  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
f : A -1-1-onto-> C  -> 
f  e.  ( C  ^m  A ) ) )
1615abssdv 3247 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  C_  ( C  ^m  A ) )
17 ovex 5883 . . . . . . 7  |-  ( C  ^m  A )  e. 
_V
1817ssex 4158 . . . . . 6  |-  ( { f  |  f : A -1-1-onto-> C }  C_  ( C  ^m  A )  ->  { f  |  f : A -1-1-onto-> C }  e.  _V )
1916, 18syl 15 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  e.  _V )
20 f1of 5472 . . . . . . . 8  |-  ( f : B -1-1-onto-> D  ->  f : B
--> D )
21 f1ofo 5479 . . . . . . . . . . 11  |-  ( h : C -1-1-onto-> D  ->  h : C -onto-> D )
22 forn 5454 . . . . . . . . . . 11  |-  ( h : C -onto-> D  ->  ran  h  =  D )
2321, 22syl 15 . . . . . . . . . 10  |-  ( h : C -1-1-onto-> D  ->  ran  h  =  D )
246rnex 4942 . . . . . . . . . 10  |-  ran  h  e.  _V
2523, 24syl6eqelr 2372 . . . . . . . . 9  |-  ( h : C -1-1-onto-> D  ->  D  e.  _V )
26 f1ofo 5479 . . . . . . . . . . 11  |-  ( g : A -1-1-onto-> B  ->  g : A -onto-> B )
27 forn 5454 . . . . . . . . . . 11  |-  ( g : A -onto-> B  ->  ran  g  =  B
)
2826, 27syl 15 . . . . . . . . . 10  |-  ( g : A -1-1-onto-> B  ->  ran  g  =  B )
2910rnex 4942 . . . . . . . . . 10  |-  ran  g  e.  _V
3028, 29syl6eqelr 2372 . . . . . . . . 9  |-  ( g : A -1-1-onto-> B  ->  B  e.  _V )
31 elmapg 6785 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  B  e.  _V )  ->  ( f  e.  ( D  ^m  B )  <-> 
f : B --> D ) )
3225, 30, 31syl2anr 464 . . . . . . . 8  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
f  e.  ( D  ^m  B )  <->  f : B
--> D ) )
3320, 32syl5ibr 212 . . . . . . 7  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
f : B -1-1-onto-> D  -> 
f  e.  ( D  ^m  B ) ) )
3433abssdv 3247 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : B -1-1-onto-> D }  C_  ( D  ^m  B ) )
35 ovex 5883 . . . . . . 7  |-  ( D  ^m  B )  e. 
_V
3635ssex 4158 . . . . . 6  |-  ( { f  |  f : B -1-1-onto-> D }  C_  ( D  ^m  B )  ->  { f  |  f : B -1-1-onto-> D }  e.  _V )
3734, 36syl 15 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : B -1-1-onto-> D }  e.  _V )
38 f1oco 5496 . . . . . . . . 9  |-  ( ( h : C -1-1-onto-> D  /\  x : A -1-1-onto-> C )  ->  (
h  o.  x ) : A -1-1-onto-> D )
3938adantll 694 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  x : A -1-1-onto-> C
)  ->  ( h  o.  x ) : A -1-1-onto-> D
)
40 f1ocnv 5485 . . . . . . . . 9  |-  ( g : A -1-1-onto-> B  ->  `' g : B -1-1-onto-> A )
4140ad2antrr 706 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  x : A -1-1-onto-> C
)  ->  `' g : B -1-1-onto-> A )
42 f1oco 5496 . . . . . . . 8  |-  ( ( ( h  o.  x
) : A -1-1-onto-> D  /\  `' g : B -1-1-onto-> A
)  ->  ( (
h  o.  x )  o.  `' g ) : B -1-1-onto-> D )
4339, 41, 42syl2anc 642 . . . . . . 7  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  x : A -1-1-onto-> C
)  ->  ( (
h  o.  x )  o.  `' g ) : B -1-1-onto-> D )
4443ex 423 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
x : A -1-1-onto-> C  -> 
( ( h  o.  x )  o.  `' g ) : B -1-1-onto-> D
) )
45 vex 2791 . . . . . . 7  |-  x  e. 
_V
46 f1oeq1 5463 . . . . . . 7  |-  ( f  =  x  ->  (
f : A -1-1-onto-> C  <->  x : A
-1-1-onto-> C ) )
4745, 46elab 2914 . . . . . 6  |-  ( x  e.  { f  |  f : A -1-1-onto-> C }  <->  x : A -1-1-onto-> C )
486, 45coex 5216 . . . . . . . 8  |-  ( h  o.  x )  e. 
_V
4910cnvex 5209 . . . . . . . 8  |-  `' g  e.  _V
5048, 49coex 5216 . . . . . . 7  |-  ( ( h  o.  x )  o.  `' g )  e.  _V
51 f1oeq1 5463 . . . . . . 7  |-  ( f  =  ( ( h  o.  x )  o.  `' g )  -> 
( f : B -1-1-onto-> D  <->  ( ( h  o.  x
)  o.  `' g ) : B -1-1-onto-> D ) )
5250, 51elab 2914 . . . . . 6  |-  ( ( ( h  o.  x
)  o.  `' g )  e.  { f  |  f : B -1-1-onto-> D } 
<->  ( ( h  o.  x )  o.  `' g ) : B -1-1-onto-> D
)
5344, 47, 523imtr4g 261 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
x  e.  { f  |  f : A -1-1-onto-> C }  ->  ( ( h  o.  x )  o.  `' g )  e. 
{ f  |  f : B -1-1-onto-> D } ) )
54 f1ocnv 5485 . . . . . . . . 9  |-  ( h : C -1-1-onto-> D  ->  `' h : D -1-1-onto-> C )
5554ad2antlr 707 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  y : B -1-1-onto-> D
)  ->  `' h : D -1-1-onto-> C )
56 f1oco 5496 . . . . . . . . . 10  |-  ( ( y : B -1-1-onto-> D  /\  g : A -1-1-onto-> B )  ->  (
y  o.  g ) : A -1-1-onto-> D )
5756ancoms 439 . . . . . . . . 9  |-  ( ( g : A -1-1-onto-> B  /\  y : B -1-1-onto-> D )  ->  (
y  o.  g ) : A -1-1-onto-> D )
5857adantlr 695 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  y : B -1-1-onto-> D
)  ->  ( y  o.  g ) : A -1-1-onto-> D
)
59 f1oco 5496 . . . . . . . 8  |-  ( ( `' h : D -1-1-onto-> C  /\  ( y  o.  g
) : A -1-1-onto-> D )  ->  ( `' h  o.  ( y  o.  g
) ) : A -1-1-onto-> C
)
6055, 58, 59syl2anc 642 . . . . . . 7  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  y : B -1-1-onto-> D
)  ->  ( `' h  o.  ( y  o.  g ) ) : A -1-1-onto-> C )
6160ex 423 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
y : B -1-1-onto-> D  -> 
( `' h  o.  ( y  o.  g
) ) : A -1-1-onto-> C
) )
62 vex 2791 . . . . . . 7  |-  y  e. 
_V
63 f1oeq1 5463 . . . . . . 7  |-  ( f  =  y  ->  (
f : B -1-1-onto-> D  <->  y : B
-1-1-onto-> D ) )
6462, 63elab 2914 . . . . . 6  |-  ( y  e.  { f  |  f : B -1-1-onto-> D }  <->  y : B -1-1-onto-> D )
656cnvex 5209 . . . . . . . 8  |-  `' h  e.  _V
6662, 10coex 5216 . . . . . . . 8  |-  ( y  o.  g )  e. 
_V
6765, 66coex 5216 . . . . . . 7  |-  ( `' h  o.  ( y  o.  g ) )  e.  _V
68 f1oeq1 5463 . . . . . . 7  |-  ( f  =  ( `' h  o.  ( y  o.  g
) )  ->  (
f : A -1-1-onto-> C  <->  ( `' h  o.  ( y  o.  g ) ) : A -1-1-onto-> C ) )
6967, 68elab 2914 . . . . . 6  |-  ( ( `' h  o.  (
y  o.  g ) )  e.  { f  |  f : A -1-1-onto-> C } 
<->  ( `' h  o.  ( y  o.  g
) ) : A -1-1-onto-> C
)
7061, 64, 693imtr4g 261 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
y  e.  { f  |  f : B -1-1-onto-> D }  ->  ( `' h  o.  ( y  o.  g
) )  e.  {
f  |  f : A -1-1-onto-> C } ) )
7147, 64anbi12i 678 . . . . . 6  |-  ( ( x  e.  { f  |  f : A -1-1-onto-> C }  /\  y  e.  {
f  |  f : B -1-1-onto-> D } )  <->  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )
72 coass 5191 . . . . . . . . . . 11  |-  ( ( ( h  o.  x
)  o.  `' g )  o.  g )  =  ( ( h  o.  x )  o.  ( `' g  o.  g ) )
73 f1ococnv1 5502 . . . . . . . . . . . . . 14  |-  ( g : A -1-1-onto-> B  ->  ( `' g  o.  g )  =  (  _I  |`  A ) )
7473ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( `' g  o.  g )  =  (  _I  |`  A )
)
7574coeq2d 4846 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  ( `' g  o.  g
) )  =  ( ( h  o.  x
)  o.  (  _I  |`  A ) ) )
7639adantrr 697 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( h  o.  x
) : A -1-1-onto-> D )
77 f1of 5472 . . . . . . . . . . . . 13  |-  ( ( h  o.  x ) : A -1-1-onto-> D  ->  ( h  o.  x ) : A --> D )
78 fcoi1 5415 . . . . . . . . . . . . 13  |-  ( ( h  o.  x ) : A --> D  -> 
( ( h  o.  x )  o.  (  _I  |`  A ) )  =  ( h  o.  x ) )
7976, 77, 783syl 18 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  (  _I  |`  A ) )  =  ( h  o.  x ) )
8075, 79eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  ( `' g  o.  g
) )  =  ( h  o.  x ) )
8172, 80syl5req 2328 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( h  o.  x
)  =  ( ( ( h  o.  x
)  o.  `' g )  o.  g ) )
82 coass 5191 . . . . . . . . . . 11  |-  ( ( h  o.  `' h
)  o.  ( y  o.  g ) )  =  ( h  o.  ( `' h  o.  ( y  o.  g
) ) )
83 f1ococnv2 5500 . . . . . . . . . . . . . 14  |-  ( h : C -1-1-onto-> D  ->  ( h  o.  `' h )  =  (  _I  |`  D )
)
8483ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( h  o.  `' h )  =  (  _I  |`  D )
)
8584coeq1d 4845 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  `' h )  o.  (
y  o.  g ) )  =  ( (  _I  |`  D )  o.  ( y  o.  g
) ) )
8658adantrl 696 . . . . . . . . . . . . 13  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( y  o.  g
) : A -1-1-onto-> D )
87 f1of 5472 . . . . . . . . . . . . 13  |-  ( ( y  o.  g ) : A -1-1-onto-> D  ->  ( y  o.  g ) : A --> D )
88 fcoi2 5416 . . . . . . . . . . . . 13  |-  ( ( y  o.  g ) : A --> D  -> 
( (  _I  |`  D )  o.  ( y  o.  g ) )  =  ( y  o.  g
) )
8986, 87, 883syl 18 . . . . . . . . . . . 12  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( (  _I  |`  D )  o.  ( y  o.  g ) )  =  ( y  o.  g
) )
9085, 89eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  `' h )  o.  (
y  o.  g ) )  =  ( y  o.  g ) )
9182, 90syl5eqr 2329 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( h  o.  ( `' h  o.  (
y  o.  g ) ) )  =  ( y  o.  g ) )
9281, 91eqeq12d 2297 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  =  ( h  o.  ( `' h  o.  ( y  o.  g ) ) )  <->  ( ( ( h  o.  x )  o.  `' g )  o.  g )  =  ( y  o.  g
) ) )
93 eqcom 2285 . . . . . . . . 9  |-  ( ( ( ( h  o.  x )  o.  `' g )  o.  g
)  =  ( y  o.  g )  <->  ( y  o.  g )  =  ( ( ( h  o.  x )  o.  `' g )  o.  g
) )
9492, 93syl6bb 252 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  =  ( h  o.  ( `' h  o.  ( y  o.  g ) ) )  <->  ( y  o.  g )  =  ( ( ( h  o.  x )  o.  `' g )  o.  g
) ) )
95 f1of1 5471 . . . . . . . . . 10  |-  ( h : C -1-1-onto-> D  ->  h : C -1-1-> D )
9695ad2antlr 707 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  ->  h : C -1-1-> D )
97 f1of 5472 . . . . . . . . . 10  |-  ( x : A -1-1-onto-> C  ->  x : A
--> C )
9897ad2antrl 708 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  ->  x : A --> C )
9960adantrl 696 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( `' h  o.  ( y  o.  g
) ) : A -1-1-onto-> C
)
100 f1of 5472 . . . . . . . . . 10  |-  ( ( `' h  o.  (
y  o.  g ) ) : A -1-1-onto-> C  -> 
( `' h  o.  ( y  o.  g
) ) : A --> C )
10199, 100syl 15 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( `' h  o.  ( y  o.  g
) ) : A --> C )
102 cocan1 5801 . . . . . . . . 9  |-  ( ( h : C -1-1-> D  /\  x : A --> C  /\  ( `' h  o.  (
y  o.  g ) ) : A --> C )  ->  ( ( h  o.  x )  =  ( h  o.  ( `' h  o.  (
y  o.  g ) ) )  <->  x  =  ( `' h  o.  (
y  o.  g ) ) ) )
10396, 98, 101, 102syl3anc 1182 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  =  ( h  o.  ( `' h  o.  ( y  o.  g ) ) )  <->  x  =  ( `' h  o.  (
y  o.  g ) ) ) )
10426ad2antrr 706 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
g : A -onto-> B
)
105 f1ofn 5473 . . . . . . . . . 10  |-  ( y : B -1-1-onto-> D  ->  y  Fn  B )
106105ad2antll 709 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
y  Fn  B )
10743adantrr 697 . . . . . . . . . 10  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  `' g ) : B -1-1-onto-> D
)
108 f1ofn 5473 . . . . . . . . . 10  |-  ( ( ( h  o.  x
)  o.  `' g ) : B -1-1-onto-> D  -> 
( ( h  o.  x )  o.  `' g )  Fn  B
)
109107, 108syl 15 . . . . . . . . 9  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( h  o.  x )  o.  `' g )  Fn  B
)
110 cocan2 5802 . . . . . . . . 9  |-  ( ( g : A -onto-> B  /\  y  Fn  B  /\  ( ( h  o.  x )  o.  `' g )  Fn  B
)  ->  ( (
y  o.  g )  =  ( ( ( h  o.  x )  o.  `' g )  o.  g )  <->  y  =  ( ( h  o.  x )  o.  `' g ) ) )
111104, 106, 109, 110syl3anc 1182 . . . . . . . 8  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( ( y  o.  g )  =  ( ( ( h  o.  x )  o.  `' g )  o.  g
)  <->  y  =  ( ( h  o.  x
)  o.  `' g ) ) )
11294, 103, 1113bitr3d 274 . . . . . . 7  |-  ( ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  /\  ( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D ) )  -> 
( x  =  ( `' h  o.  (
y  o.  g ) )  <->  y  =  ( ( h  o.  x
)  o.  `' g ) ) )
113112ex 423 . . . . . 6  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
( x : A -1-1-onto-> C  /\  y : B -1-1-onto-> D )  ->  ( x  =  ( `' h  o.  ( y  o.  g
) )  <->  y  =  ( ( h  o.  x )  o.  `' g ) ) ) )
11471, 113syl5bi 208 . . . . 5  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  (
( x  e.  {
f  |  f : A -1-1-onto-> C }  /\  y  e.  { f  |  f : B -1-1-onto-> D } )  -> 
( x  =  ( `' h  o.  (
y  o.  g ) )  <->  y  =  ( ( h  o.  x
)  o.  `' g ) ) ) )
11519, 37, 53, 70, 114en3d 6898 . . . 4  |-  ( ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  { f  |  f : B -1-1-onto-> D }
)
116115exlimivv 1667 . . 3  |-  ( E. g E. h ( g : A -1-1-onto-> B  /\  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  { f  |  f : B -1-1-onto-> D }
)
1173, 116sylbir 204 . 2  |-  ( ( E. g  g : A -1-1-onto-> B  /\  E. h  h : C -1-1-onto-> D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  { f  |  f : B -1-1-onto-> D }
)
1181, 2, 117syl2anb 465 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  { f  |  f : A -1-1-onto-> C }  ~~  {
f  |  f : B -1-1-onto-> D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    _I cid 4304   `'ccnv 4688   dom cdm 4689   ran crn 4690    |` cres 4691    o. ccom 4693    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254  (class class class)co 5858    ^m cmap 6772    ~~ cen 6860
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-en 6864
  Copyright terms: Public domain W3C validator