MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashxplem Unicode version

Theorem hashxplem 11385
Description: Lemma for hashxp 11386. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypothesis
Ref Expression
hashxplem.1  |-  B  e. 
Fin
Assertion
Ref Expression
hashxplem  |-  ( A  e.  Fin  ->  ( # `
 ( A  X.  B ) )  =  ( ( # `  A
)  x.  ( # `  B ) ) )

Proof of Theorem hashxplem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4703 . . . 4  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21fveq2d 5529 . . 3  |-  ( x  =  (/)  ->  ( # `  ( x  X.  B
) )  =  (
# `  ( (/)  X.  B
) ) )
3 fveq2 5525 . . . 4  |-  ( x  =  (/)  ->  ( # `  x )  =  (
# `  (/) ) )
43oveq1d 5873 . . 3  |-  ( x  =  (/)  ->  ( (
# `  x )  x.  ( # `  B
) )  =  ( ( # `  (/) )  x.  ( # `  B
) ) )
52, 4eqeq12d 2297 . 2  |-  ( x  =  (/)  ->  ( (
# `  ( x  X.  B ) )  =  ( ( # `  x
)  x.  ( # `  B ) )  <->  ( # `  ( (/) 
X.  B ) )  =  ( ( # `  (/) )  x.  ( # `
 B ) ) ) )
6 xpeq1 4703 . . . 4  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
76fveq2d 5529 . . 3  |-  ( x  =  y  ->  ( # `
 ( x  X.  B ) )  =  ( # `  (
y  X.  B ) ) )
8 fveq2 5525 . . . 4  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
98oveq1d 5873 . . 3  |-  ( x  =  y  ->  (
( # `  x )  x.  ( # `  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )
107, 9eqeq12d 2297 . 2  |-  ( x  =  y  ->  (
( # `  ( x  X.  B ) )  =  ( ( # `  x )  x.  ( # `
 B ) )  <-> 
( # `  ( y  X.  B ) )  =  ( ( # `  y )  x.  ( # `
 B ) ) ) )
11 xpeq1 4703 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  X.  B )  =  ( ( y  u.  {
z } )  X.  B ) )
1211fveq2d 5529 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( # `  (
x  X.  B ) )  =  ( # `  ( ( y  u. 
{ z } )  X.  B ) ) )
13 fveq2 5525 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( # `  x
)  =  ( # `  ( y  u.  {
z } ) ) )
1413oveq1d 5873 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( # `  x )  x.  ( # `
 B ) )  =  ( ( # `  ( y  u.  {
z } ) )  x.  ( # `  B
) ) )
1512, 14eqeq12d 2297 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( # `  ( x  X.  B
) )  =  ( ( # `  x
)  x.  ( # `  B ) )  <->  ( # `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( # `  (
y  u.  { z } ) )  x.  ( # `  B
) ) ) )
16 xpeq1 4703 . . . 4  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1716fveq2d 5529 . . 3  |-  ( x  =  A  ->  ( # `
 ( x  X.  B ) )  =  ( # `  ( A  X.  B ) ) )
18 fveq2 5525 . . . 4  |-  ( x  =  A  ->  ( # `
 x )  =  ( # `  A
) )
1918oveq1d 5873 . . 3  |-  ( x  =  A  ->  (
( # `  x )  x.  ( # `  B
) )  =  ( ( # `  A
)  x.  ( # `  B ) ) )
2017, 19eqeq12d 2297 . 2  |-  ( x  =  A  ->  (
( # `  ( x  X.  B ) )  =  ( ( # `  x )  x.  ( # `
 B ) )  <-> 
( # `  ( A  X.  B ) )  =  ( ( # `  A )  x.  ( # `
 B ) ) ) )
21 hashxplem.1 . . . 4  |-  B  e. 
Fin
22 hashcl 11350 . . . . . 6  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
2322nn0cnd 10020 . . . . 5  |-  ( B  e.  Fin  ->  ( # `
 B )  e.  CC )
2423mul02d 9010 . . . 4  |-  ( B  e.  Fin  ->  (
0  x.  ( # `  B ) )  =  0 )
2521, 24ax-mp 8 . . 3  |-  ( 0  x.  ( # `  B
) )  =  0
26 hash0 11355 . . . 4  |-  ( # `  (/) )  =  0
2726oveq1i 5868 . . 3  |-  ( (
# `  (/) )  x.  ( # `  B
) )  =  ( 0  x.  ( # `  B ) )
28 xp0r 4768 . . . . 5  |-  ( (/)  X.  B )  =  (/)
2928fveq2i 5528 . . . 4  |-  ( # `  ( (/)  X.  B
) )  =  (
# `  (/) )
3029, 26eqtri 2303 . . 3  |-  ( # `  ( (/)  X.  B
) )  =  0
3125, 27, 303eqtr4ri 2314 . 2  |-  ( # `  ( (/)  X.  B
) )  =  ( ( # `  (/) )  x.  ( # `  B
) )
32 oveq1 5865 . . . . 5  |-  ( (
# `  ( y  X.  B ) )  =  ( ( # `  y
)  x.  ( # `  B ) )  -> 
( ( # `  (
y  X.  B ) )  +  ( # `  B ) )  =  ( ( ( # `  y )  x.  ( # `
 B ) )  +  ( # `  B
) ) )
3332adantl 452 . . . 4  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( # `  ( y  X.  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )  ->  ( ( # `  ( y  X.  B
) )  +  (
# `  B )
)  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) ) )
34 xpundir 4742 . . . . . . 7  |-  ( ( y  u.  { z } )  X.  B
)  =  ( ( y  X.  B )  u.  ( { z }  X.  B ) )
3534fveq2i 5528 . . . . . 6  |-  ( # `  ( ( y  u. 
{ z } )  X.  B ) )  =  ( # `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )
36 xpfi 7128 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
3721, 36mpan2 652 . . . . . . . 8  |-  ( y  e.  Fin  ->  (
y  X.  B )  e.  Fin )
38 inxp 4818 . . . . . . . . 9  |-  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  ( ( y  i^i  { z } )  X.  ( B  i^i  B ) )
39 disjsn 3693 . . . . . . . . . . . 12  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
4039biimpri 197 . . . . . . . . . . 11  |-  ( -.  z  e.  y  -> 
( y  i^i  {
z } )  =  (/) )
4140xpeq1d 4712 . . . . . . . . . 10  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (
(/)  X.  ( B  i^i  B ) ) )
42 xp0r 4768 . . . . . . . . . 10  |-  ( (/)  X.  ( B  i^i  B
) )  =  (/)
4341, 42syl6eq 2331 . . . . . . . . 9  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (/) )
4438, 43syl5eq 2327 . . . . . . . 8  |-  ( -.  z  e.  y  -> 
( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
45 snfi 6941 . . . . . . . . . 10  |-  { z }  e.  Fin
46 xpfi 7128 . . . . . . . . . 10  |-  ( ( { z }  e.  Fin  /\  B  e.  Fin )  ->  ( { z }  X.  B )  e.  Fin )
4745, 21, 46mp2an 653 . . . . . . . . 9  |-  ( { z }  X.  B
)  e.  Fin
48 hashun 11364 . . . . . . . . 9  |-  ( ( ( y  X.  B
)  e.  Fin  /\  ( { z }  X.  B )  e.  Fin  /\  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )  ->  ( # `  ( ( y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( # `  ( y  X.  B
) )  +  (
# `  ( {
z }  X.  B
) ) ) )
4947, 48mp3an2 1265 . . . . . . . 8  |-  ( ( ( y  X.  B
)  e.  Fin  /\  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )  ->  ( # `  ( ( y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( # `  ( y  X.  B
) )  +  (
# `  ( {
z }  X.  B
) ) ) )
5037, 44, 49syl2an 463 . . . . . . 7  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( # `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )  =  ( ( # `  (
y  X.  B ) )  +  ( # `  ( { z }  X.  B ) ) ) )
51 snex 4216 . . . . . . . . . . 11  |-  { z }  e.  _V
5221elexi 2797 . . . . . . . . . . 11  |-  B  e. 
_V
5351, 52xpcomen 6953 . . . . . . . . . 10  |-  ( { z }  X.  B
)  ~~  ( B  X.  { z } )
54 vex 2791 . . . . . . . . . . 11  |-  z  e. 
_V
5552, 54xpsnen 6946 . . . . . . . . . 10  |-  ( B  X.  { z } )  ~~  B
5653, 55entri 6915 . . . . . . . . 9  |-  ( { z }  X.  B
)  ~~  B
57 hashen 11346 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  e. 
Fin  /\  B  e.  Fin )  ->  ( (
# `  ( {
z }  X.  B
) )  =  (
# `  B )  <->  ( { z }  X.  B )  ~~  B
) )
5847, 21, 57mp2an 653 . . . . . . . . 9  |-  ( (
# `  ( {
z }  X.  B
) )  =  (
# `  B )  <->  ( { z }  X.  B )  ~~  B
)
5956, 58mpbir 200 . . . . . . . 8  |-  ( # `  ( { z }  X.  B ) )  =  ( # `  B
)
6059oveq2i 5869 . . . . . . 7  |-  ( (
# `  ( y  X.  B ) )  +  ( # `  ( { z }  X.  B ) ) )  =  ( ( # `  ( y  X.  B
) )  +  (
# `  B )
)
6150, 60syl6eq 2331 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( # `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )  =  ( ( # `  (
y  X.  B ) )  +  ( # `  B ) ) )
6235, 61syl5eq 2327 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( # `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( # `  (
y  X.  B ) )  +  ( # `  B ) ) )
6362adantr 451 . . . 4  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( # `  ( y  X.  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )  ->  ( # `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( # `  (
y  X.  B ) )  +  ( # `  B ) ) )
64 hashunsng 11367 . . . . . . . 8  |-  ( z  e.  _V  ->  (
( y  e.  Fin  /\ 
-.  z  e.  y )  ->  ( # `  (
y  u.  { z } ) )  =  ( ( # `  y
)  +  1 ) ) )
6554, 64ax-mp 8 . . . . . . 7  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( # `  (
y  u.  { z } ) )  =  ( ( # `  y
)  +  1 ) )
6665oveq1d 5873 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( # `
 ( y  u. 
{ z } ) )  x.  ( # `  B ) )  =  ( ( ( # `  y )  +  1 )  x.  ( # `  B ) ) )
67 hashcl 11350 . . . . . . . . . 10  |-  ( y  e.  Fin  ->  ( # `
 y )  e. 
NN0 )
6867nn0cnd 10020 . . . . . . . . 9  |-  ( y  e.  Fin  ->  ( # `
 y )  e.  CC )
69 ax-1cn 8795 . . . . . . . . . 10  |-  1  e.  CC
70 nn0cn 9975 . . . . . . . . . . 11  |-  ( (
# `  B )  e.  NN0  ->  ( # `  B
)  e.  CC )
7121, 22, 70mp2b 9 . . . . . . . . . 10  |-  ( # `  B )  e.  CC
72 adddir 8830 . . . . . . . . . 10  |-  ( ( ( # `  y
)  e.  CC  /\  1  e.  CC  /\  ( # `
 B )  e.  CC )  ->  (
( ( # `  y
)  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( 1  x.  ( # `
 B ) ) ) )
7369, 71, 72mp3an23 1269 . . . . . . . . 9  |-  ( (
# `  y )  e.  CC  ->  ( (
( # `  y )  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( 1  x.  ( # `
 B ) ) ) )
7468, 73syl 15 . . . . . . . 8  |-  ( y  e.  Fin  ->  (
( ( # `  y
)  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( 1  x.  ( # `
 B ) ) ) )
7571mulid2i 8840 . . . . . . . . 9  |-  ( 1  x.  ( # `  B
) )  =  (
# `  B )
7675oveq2i 5869 . . . . . . . 8  |-  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( 1  x.  ( # `
 B ) ) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) )
7774, 76syl6eq 2331 . . . . . . 7  |-  ( y  e.  Fin  ->  (
( ( # `  y
)  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) ) )
7877adantr 451 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( # `  y )  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) ) )
7966, 78eqtrd 2315 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( # `
 ( y  u. 
{ z } ) )  x.  ( # `  B ) )  =  ( ( ( # `  y )  x.  ( # `
 B ) )  +  ( # `  B
) ) )
8079adantr 451 . . . 4  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( # `  ( y  X.  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )  ->  ( ( # `  ( y  u.  {
z } ) )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) ) )
8133, 63, 803eqtr4d 2325 . . 3  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( # `  ( y  X.  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )  ->  ( # `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( # `  (
y  u.  { z } ) )  x.  ( # `  B
) ) )
8281ex 423 . 2  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( # `
 ( y  X.  B ) )  =  ( ( # `  y
)  x.  ( # `  B ) )  -> 
( # `  ( ( y  u.  { z } )  X.  B
) )  =  ( ( # `  (
y  u.  { z } ) )  x.  ( # `  B
) ) ) )
835, 10, 15, 20, 31, 82findcard2s 7099 1  |-  ( A  e.  Fin  ->  ( # `
 ( A  X.  B ) )  =  ( ( # `  A
)  x.  ( # `  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    u. cun 3150    i^i cin 3151   (/)c0 3455   {csn 3640   class class class wbr 4023    X. cxp 4687   ` cfv 5255  (class class class)co 5858    ~~ cen 6860   Fincfn 6863   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   NN0cn0 9965   #chash 11337
This theorem is referenced by:  hashxp  11386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338
  Copyright terms: Public domain W3C validator