HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hatomistici Unicode version

Theorem hatomistici 23056
Description:  CH is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Hypothesis
Ref Expression
hatomistic.1  |-  A  e. 
CH
Assertion
Ref Expression
hatomistici  |-  A  =  (  \/H  `  { x  e. HAtoms  |  x  C_  A } )
Distinct variable group:    x, A

Proof of Theorem hatomistici
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3334 . . . . 5  |-  { x  e. HAtoms  |  x  C_  A }  C_ HAtoms
2 atssch 23037 . . . . 5  |- HAtoms  C_  CH
31, 2sstri 3264 . . . 4  |-  { x  e. HAtoms  |  x  C_  A }  C_  CH
4 chsupcl 22033 . . . 4  |-  ( { x  e. HAtoms  |  x  C_  A }  C_  CH  ->  ( 
\/H  `  { x  e. HAtoms  |  x  C_  A } )  e.  CH )
53, 4ax-mp 8 . . 3  |-  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } )  e.  CH
6 hatomistic.1 . . . 4  |-  A  e. 
CH
76chshii 21921 . . 3  |-  A  e.  SH
8 atelch 23038 . . . . . . . 8  |-  ( y  e. HAtoms  ->  y  e.  CH )
98anim1i 551 . . . . . . 7  |-  ( ( y  e. HAtoms  /\  y  C_  A )  ->  (
y  e.  CH  /\  y  C_  A ) )
10 sseq1 3275 . . . . . . . 8  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
1110elrab 2999 . . . . . . 7  |-  ( y  e.  { x  e. HAtoms  |  x  C_  A }  <->  ( y  e. HAtoms  /\  y  C_  A ) )
1210elrab 2999 . . . . . . 7  |-  ( y  e.  { x  e. 
CH  |  x  C_  A }  <->  ( y  e. 
CH  /\  y  C_  A ) )
139, 11, 123imtr4i 257 . . . . . 6  |-  ( y  e.  { x  e. HAtoms  |  x  C_  A }  ->  y  e.  { x  e.  CH  |  x  C_  A } )
1413ssriv 3260 . . . . 5  |-  { x  e. HAtoms  |  x  C_  A }  C_  { x  e. 
CH  |  x  C_  A }
15 ssrab2 3334 . . . . . 6  |-  { x  e.  CH  |  x  C_  A }  C_  CH
16 chsupss 22035 . . . . . 6  |-  ( ( { x  e. HAtoms  |  x 
C_  A }  C_  CH 
/\  { x  e. 
CH  |  x  C_  A }  C_  CH )  ->  ( { x  e. HAtoms  |  x  C_  A }  C_ 
{ x  e.  CH  |  x  C_  A }  ->  (  \/H  `  { x  e. HAtoms  |  x  C_  A } )  C_  (  \/H  `  { x  e.  CH  |  x  C_  A }
) ) )
173, 15, 16mp2an 653 . . . . 5  |-  ( { x  e. HAtoms  |  x  C_  A }  C_  { x  e.  CH  |  x  C_  A }  ->  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) 
C_  (  \/H  `  {
x  e.  CH  |  x  C_  A } ) )
1814, 17ax-mp 8 . . . 4  |-  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) 
C_  (  \/H  `  {
x  e.  CH  |  x  C_  A } )
19 chsupid 22105 . . . . 5  |-  ( A  e.  CH  ->  (  \/H  `  { x  e.  CH  |  x  C_  A }
)  =  A )
206, 19ax-mp 8 . . . 4  |-  (  \/H  `  { x  e.  CH  |  x  C_  A }
)  =  A
2118, 20sseqtri 3286 . . 3  |-  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) 
C_  A
22 elssuni 3936 . . . . . . . . . . 11  |-  ( y  e.  { x  e. HAtoms  |  x  C_  A }  ->  y  C_  U. { x  e. HAtoms  |  x  C_  A } )
2311, 22sylbir 204 . . . . . . . . . 10  |-  ( ( y  e. HAtoms  /\  y  C_  A )  ->  y  C_ 
U. { x  e. HAtoms  |  x  C_  A }
)
24 chsupunss 22037 . . . . . . . . . . 11  |-  ( { x  e. HAtoms  |  x  C_  A }  C_  CH  ->  U. { x  e. HAtoms  |  x 
C_  A }  C_  (  \/H  `  { x  e. HAtoms  |  x  C_  A } ) )
253, 24ax-mp 8 . . . . . . . . . 10  |-  U. {
x  e. HAtoms  |  x  C_  A }  C_  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } )
2623, 25syl6ss 3267 . . . . . . . . 9  |-  ( ( y  e. HAtoms  /\  y  C_  A )  ->  y  C_  (  \/H  `  { x  e. HAtoms  |  x  C_  A } ) )
2726ex 423 . . . . . . . 8  |-  ( y  e. HAtoms  ->  ( y  C_  A  ->  y  C_  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) )
28 atne0 23039 . . . . . . . . . . 11  |-  ( y  e. HAtoms  ->  y  =/=  0H )
2928adantr 451 . . . . . . . . . 10  |-  ( ( y  e. HAtoms  /\  y  C_  (  \/H  `  { x  e. HAtoms  |  x  C_  A } ) )  -> 
y  =/=  0H )
30 ssin 3467 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } )  /\  y  C_  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) )  <->  y  C_  (
(  \/H  `  { x  e. HAtoms  |  x  C_  A } )  i^i  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) ) )
315chocini 22147 . . . . . . . . . . . . . . . 16  |-  ( ( 
\/H  `  { x  e. HAtoms  |  x  C_  A } )  i^i  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) )  =  0H
3231sseq2i 3279 . . . . . . . . . . . . . . 15  |-  ( y 
C_  ( (  \/H  `  { x  e. HAtoms  |  x 
C_  A } )  i^i  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) )  <->  y  C_  0H )
3330, 32bitr2i 241 . . . . . . . . . . . . . 14  |-  ( y 
C_  0H  <->  ( y  C_  (  \/H  `  { x  e. HAtoms  |  x  C_  A } )  /\  y  C_  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) ) )
34 chle0 22136 . . . . . . . . . . . . . . 15  |-  ( y  e.  CH  ->  (
y  C_  0H  <->  y  =  0H ) )
358, 34syl 15 . . . . . . . . . . . . . 14  |-  ( y  e. HAtoms  ->  ( y  C_  0H 
<->  y  =  0H ) )
3633, 35syl5bbr 250 . . . . . . . . . . . . 13  |-  ( y  e. HAtoms  ->  ( ( y 
C_  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } )  /\  y  C_  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) )  <->  y  =  0H ) )
3736biimpa 470 . . . . . . . . . . . 12  |-  ( ( y  e. HAtoms  /\  (
y  C_  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } )  /\  y  C_  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) ) )  ->  y  =  0H )
3837expr 598 . . . . . . . . . . 11  |-  ( ( y  e. HAtoms  /\  y  C_  (  \/H  `  { x  e. HAtoms  |  x  C_  A } ) )  -> 
( y  C_  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) )  ->  y  =  0H ) )
3938necon3ad 2557 . . . . . . . . . 10  |-  ( ( y  e. HAtoms  /\  y  C_  (  \/H  `  { x  e. HAtoms  |  x  C_  A } ) )  -> 
( y  =/=  0H  ->  -.  y  C_  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) ) )
4029, 39mpd 14 . . . . . . . . 9  |-  ( ( y  e. HAtoms  /\  y  C_  (  \/H  `  { x  e. HAtoms  |  x  C_  A } ) )  ->  -.  y  C_  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) )
4140ex 423 . . . . . . . 8  |-  ( y  e. HAtoms  ->  ( y  C_  (  \/H  `  { x  e. HAtoms  |  x  C_  A } )  ->  -.  y  C_  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) ) )
4227, 41syld 40 . . . . . . 7  |-  ( y  e. HAtoms  ->  ( y  C_  A  ->  -.  y  C_  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) ) )
43 imnan 411 . . . . . . 7  |-  ( ( y  C_  A  ->  -.  y  C_  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x  C_  A } ) ) )  <->  -.  ( y  C_  A  /\  y  C_  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) ) )
4442, 43sylib 188 . . . . . 6  |-  ( y  e. HAtoms  ->  -.  ( y  C_  A  /\  y  C_  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) ) )
45 ssin 3467 . . . . . 6  |-  ( ( y  C_  A  /\  y  C_  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) )  <->  y  C_  ( A  i^i  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) ) )
4644, 45sylnib 295 . . . . 5  |-  ( y  e. HAtoms  ->  -.  y  C_  ( A  i^i  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) ) )
4746nrex 2721 . . . 4  |-  -.  E. y  e. HAtoms  y  C_  ( A  i^i  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) )
485choccli 22000 . . . . . . 7  |-  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) )  e.  CH
496, 48chincli 22153 . . . . . 6  |-  ( A  i^i  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) )  e.  CH
5049hatomici 23053 . . . . 5  |-  ( ( A  i^i  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) )  =/=  0H  ->  E. y  e. HAtoms  y  C_  ( A  i^i  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) ) )
5150necon1bi 2564 . . . 4  |-  ( -. 
E. y  e. HAtoms  y  C_  ( A  i^i  ( _|_ `  (  \/H  `  {
x  e. HAtoms  |  x  C_  A } ) ) )  ->  ( A  i^i  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) )  =  0H )
5247, 51ax-mp 8 . . 3  |-  ( A  i^i  ( _|_ `  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } ) ) )  =  0H
535, 7, 21, 52omlsii 22096 . 2  |-  (  \/H  `  { x  e. HAtoms  |  x 
C_  A } )  =  A
5453eqcomi 2362 1  |-  A  =  (  \/H  `  { x  e. HAtoms  |  x  C_  A } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620   {crab 2623    i^i cin 3227    C_ wss 3228   U.cuni 3908   ` cfv 5337   CHcch 21623   _|_cort 21624    \/H chsup 21628   0Hc0h 21629  HAtomscat 21659
This theorem is referenced by:  chpssati  23057
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cc 8151  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905  ax-addf 8906  ax-mulf 8907  ax-hilex 21693  ax-hfvadd 21694  ax-hvcom 21695  ax-hvass 21696  ax-hv0cl 21697  ax-hvaddid 21698  ax-hfvmul 21699  ax-hvmulid 21700  ax-hvmulass 21701  ax-hvdistr1 21702  ax-hvdistr2 21703  ax-hvmul0 21704  ax-hfi 21772  ax-his1 21775  ax-his2 21776  ax-his3 21777  ax-his4 21778  ax-hcompl 21895
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-omul 6571  df-er 6747  df-map 6862  df-pm 6863  df-ixp 6906  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-fi 7255  df-sup 7284  df-oi 7315  df-card 7662  df-acn 7665  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-q 10409  df-rp 10447  df-xneg 10544  df-xadd 10545  df-xmul 10546  df-ioo 10752  df-ico 10754  df-icc 10755  df-fz 10875  df-fzo 10963  df-fl 11017  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-rlim 12059  df-sum 12256  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-starv 13320  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-unif 13328  df-hom 13329  df-cco 13330  df-rest 13426  df-topn 13427  df-topgen 13443  df-pt 13444  df-prds 13447  df-xrs 13502  df-0g 13503  df-gsum 13504  df-qtop 13509  df-imas 13510  df-xps 13512  df-mre 13587  df-mrc 13588  df-acs 13590  df-mnd 14466  df-submnd 14515  df-mulg 14591  df-cntz 14892  df-cmn 15190  df-xmet 16475  df-met 16476  df-bl 16477  df-mopn 16478  df-fbas 16479  df-fg 16480  df-cnfld 16483  df-top 16742  df-bases 16744  df-topon 16745  df-topsp 16746  df-cld 16862  df-ntr 16863  df-cls 16864  df-nei 16941  df-cn 17063  df-cnp 17064  df-lm 17065  df-haus 17149  df-tx 17363  df-hmeo 17552  df-fil 17643  df-fm 17735  df-flim 17736  df-flf 17737  df-xms 17987  df-ms 17988  df-tms 17989  df-cfil 18785  df-cau 18786  df-cmet 18787  df-grpo 20970  df-gid 20971  df-ginv 20972  df-gdiv 20973  df-ablo 21061  df-subgo 21081  df-vc 21216  df-nv 21262  df-va 21265  df-ba 21266  df-sm 21267  df-0v 21268  df-vs 21269  df-nmcv 21270  df-ims 21271  df-dip 21388  df-ssp 21412  df-ph 21505  df-cbn 21556  df-hnorm 21662  df-hba 21663  df-hvsub 21665  df-hlim 21666  df-hcau 21667  df-sh 21900  df-ch 21915  df-oc 21945  df-ch0 21946  df-span 22002  df-chsup 22004  df-cv 22973  df-at 23032
  Copyright terms: Public domain W3C validator