MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbae Unicode version

Theorem hbae 1714
Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbae  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )

Proof of Theorem hbae
StepHypRef Expression
1 ax-4 1601 . . . . 5  |-  ( A. x  x  =  y  ->  x  =  y )
2 ax-12o 1574 . . . . 5  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
) )
31, 2syl7 63 . . . 4  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( A. x  x  =  y  ->  A. z  x  =  y ) ) )
4 ax10o 1708 . . . . 5  |-  ( A. x  x  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
54alequcoms 1591 . . . 4  |-  ( A. z  z  =  x  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
6 ax10o 1708 . . . . . . 7  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
76pm2.43i 43 . . . . . 6  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
8 ax10o 1708 . . . . . 6  |-  ( A. y  y  =  z  ->  ( A. y  x  =  y  ->  A. z  x  =  y )
)
97, 8syl5 28 . . . . 5  |-  ( A. y  y  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
109alequcoms 1591 . . . 4  |-  ( A. z  z  =  y  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
113, 5, 10pm2.61ii 155 . . 3  |-  ( A. x  x  =  y  ->  A. z  x  =  y )
1211a5i 1614 . 2  |-  ( A. x  x  =  y  ->  A. x A. z  x  =  y )
13 ax-7 1454 . 2  |-  ( A. x A. z  x  =  y  ->  A. z A. x  x  =  y )
1412, 13syl 15 1  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1451
This theorem is referenced by:  hbaes  1716  hbnae  1717  dral1  1725  dral2  1727  drex2  1730  sbequ5  1766  aev  1784  sbcom  1841  sbcom2  1928  exists1  2050  copsexg  3850  axextnd  7729  axrepnd  7732  axunnd  7734  axpowndlem3  7737  axpownd  7739  axregndlem1  7740  axregnd  7742  axacndlem1  7745  axacndlem2  7746  axacndlem3  7747  axacndlem4  7748  axacndlem5  7749  axacnd  7750  copsexgb  22865  a9e2eq  25774  a12stdy3  26531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1452  ax-6 1453  ax-7 1454  ax-gen 1455  ax-8 1535  ax-11 1536  ax-17 1540  ax-12o 1574  ax-10 1588  ax-9 1594  ax-4 1601
This theorem depends on definitions:  df-bi 175  df-ex 1457
  Copyright terms: Public domain W3C validator