MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnae-o Unicode version

Theorem hbnae-o 2118
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). Version of hbnae 1895 using ax-10o 2078. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbnae-o  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )

Proof of Theorem hbnae-o
StepHypRef Expression
1 hbae-o 2092 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
21hbn 1720 1  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527
This theorem is referenced by:  dvelimf-o  2119  ax11indalem  2136  ax11inda2ALT  2137
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-4 2074  ax-5o 2075  ax-6o 2076  ax-10o 2078  ax-12o 2081
  Copyright terms: Public domain W3C validator