MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnae Unicode version

Theorem hbnae 1898
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbnae  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )

Proof of Theorem hbnae
StepHypRef Expression
1 hbae 1895 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
21hbn 1722 1  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527
This theorem is referenced by:  hbnaes  1900  dvelimfALT  1907  eujustALT  2147  a9e2nd  27607  a9e2ndVD  27964  a9e2ndeqVD  27965  a9e2ndALT  27987  a9e2ndeqALT  27988  ax12-2  28382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator