Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbntg Unicode version

Theorem hbntg 23573
Description: A more general form of hbnt 1724. (Contributed by Scott Fenton, 13-Dec-2010.)
Assertion
Ref Expression
hbntg  |-  ( A. x ( ph  ->  A. x ps )  -> 
( -.  ps  ->  A. x  -.  ph )
)

Proof of Theorem hbntg
StepHypRef Expression
1 ax6o 1723 . . 3  |-  ( -. 
A. x  -.  A. x ps  ->  ps )
21con1i 121 . 2  |-  ( -. 
ps  ->  A. x  -.  A. x ps )
3 con3 126 . . 3  |-  ( (
ph  ->  A. x ps )  ->  ( -.  A. x ps  ->  -.  ph ) )
43al2imi 1548 . 2  |-  ( A. x ( ph  ->  A. x ps )  -> 
( A. x  -.  A. x ps  ->  A. x  -.  ph ) )
52, 4syl5 28 1  |-  ( A. x ( ph  ->  A. x ps )  -> 
( -.  ps  ->  A. x  -.  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527
This theorem is referenced by:  hbimtg  23574  hbng  23576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
  Copyright terms: Public domain W3C validator