MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbs1 Structured version   Unicode version

Theorem hbs1 2187
Description:  x is not free in  [
y  /  x ] ph when  x and  y are distinct. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbs1  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem hbs1
StepHypRef Expression
1 ax16 2053 . 2  |-  ( A. x  x  =  y  ->  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
2 hbsb2 2099 . 2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
31, 2pm2.61i 159 1  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1550   [wsb 1659
This theorem is referenced by:  nfs1v  2188  hbab1  2431  sb5ALT  28707  2sb5ndVD  29120  sb5ALTVD  29123  2sb5ndALT  29142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660
  Copyright terms: Public domain W3C validator