Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbt Unicode version

Theorem hbt 26925
Description: The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
hbt.p  |-  P  =  (Poly1 `  R )
Assertion
Ref Expression
hbt  |-  ( R  e. LNoeR  ->  P  e. LNoeR )

Proof of Theorem hbt
Dummy variables  a 
b  c  e  f  g  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnrrng 26907 . . 3  |-  ( R  e. LNoeR  ->  R  e.  Ring )
2 hbt.p . . . 4  |-  P  =  (Poly1 `  R )
32ply1rng 16536 . . 3  |-  ( R  e.  Ring  ->  P  e. 
Ring )
41, 3syl 15 . 2  |-  ( R  e. LNoeR  ->  P  e.  Ring )
5 eqid 2366 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
6 eqid 2366 . . . . . . . 8  |-  (LIdeal `  R )  =  (LIdeal `  R )
75, 6islnr3 26910 . . . . . . 7  |-  ( R  e. LNoeR 
<->  ( R  e.  Ring  /\  (LIdeal `  R )  e.  (NoeACS `  ( Base `  R ) ) ) )
87simprbi 450 . . . . . 6  |-  ( R  e. LNoeR  ->  (LIdeal `  R )  e.  (NoeACS `  ( Base `  R ) ) )
98adantr 451 . . . . 5  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  (LIdeal `  R
)  e.  (NoeACS `  ( Base `  R )
) )
10 eqid 2366 . . . . . . 7  |-  (LIdeal `  P )  =  (LIdeal `  P )
11 eqid 2366 . . . . . . 7  |-  (ldgIdlSeq `  R
)  =  (ldgIdlSeq `  R
)
122, 10, 11, 6hbtlem7 26920 . . . . . 6  |-  ( ( R  e.  Ring  /\  a  e.  (LIdeal `  P )
)  ->  ( (ldgIdlSeq `  R ) `  a
) : NN0 --> (LIdeal `  R ) )
131, 12sylan 457 . . . . 5  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  ( (ldgIdlSeq `  R ) `  a
) : NN0 --> (LIdeal `  R ) )
141ad2antrr 706 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  R  e.  Ring )
15 simplr 731 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  a  e.  (LIdeal `  P ) )
16 simpr 447 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  b  e.  NN0 )
17 peano2nn0 10153 . . . . . . . 8  |-  ( b  e.  NN0  ->  ( b  +  1 )  e. 
NN0 )
1817adantl 452 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  ( b  +  1 )  e. 
NN0 )
19 nn0re 10123 . . . . . . . . 9  |-  ( b  e.  NN0  ->  b  e.  RR )
2019lep1d 9835 . . . . . . . 8  |-  ( b  e.  NN0  ->  b  <_ 
( b  +  1 ) )
2120adantl 452 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  b  <_  ( b  +  1 ) )
222, 10, 11, 14, 15, 16, 18, 21hbtlem4 26921 . . . . . 6  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  b
)  C_  ( (
(ldgIdlSeq `  R ) `  a ) `  (
b  +  1 ) ) )
2322ralrimiva 2711 . . . . 5  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  A. b  e.  NN0  ( ( (ldgIdlSeq `  R ) `  a
) `  b )  C_  ( ( (ldgIdlSeq `  R
) `  a ) `  ( b  +  1 ) ) )
24 nacsfix 26378 . . . . 5  |-  ( ( (LIdeal `  R )  e.  (NoeACS `  ( Base `  R ) )  /\  ( (ldgIdlSeq `  R ) `  a ) : NN0 --> (LIdeal `  R )  /\  A. b  e.  NN0  ( ( (ldgIdlSeq `  R ) `  a ) `  b
)  C_  ( (
(ldgIdlSeq `  R ) `  a ) `  (
b  +  1 ) ) )  ->  E. c  e.  NN0  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
259, 13, 23, 24syl3anc 1183 . . . 4  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  E. c  e.  NN0  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
26 fzfi 11198 . . . . . . . . 9  |-  ( 0 ... c )  e. 
Fin
27 eqid 2366 . . . . . . . . . . 11  |-  (RSpan `  P )  =  (RSpan `  P )
28 simpll 730 . . . . . . . . . . 11  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  e  e.  ( 0 ... c
) )  ->  R  e. LNoeR )
29 simplr 731 . . . . . . . . . . 11  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  e  e.  ( 0 ... c
) )  ->  a  e.  (LIdeal `  P )
)
30 elfznn0 10975 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 ... c )  ->  e  e.  NN0 )
3130adantl 452 . . . . . . . . . . 11  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  e  e.  ( 0 ... c
) )  ->  e  e.  NN0 )
322, 10, 11, 27, 28, 29, 31hbtlem6 26924 . . . . . . . . . 10  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  e  e.  ( 0 ... c
) )  ->  E. b  e.  ( ~P a  i^i 
Fin ) ( ( (ldgIdlSeq `  R ) `  a ) `  e
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  b ) ) `  e ) )
3332ralrimiva 2711 . . . . . . . . 9  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  A. e  e.  ( 0 ... c
) E. b  e.  ( ~P a  i^i 
Fin ) ( ( (ldgIdlSeq `  R ) `  a ) `  e
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  b ) ) `  e ) )
34 fveq2 5632 . . . . . . . . . . . . 13  |-  ( b  =  ( f `  e )  ->  (
(RSpan `  P ) `  b )  =  ( (RSpan `  P ) `  ( f `  e
) ) )
3534fveq2d 5636 . . . . . . . . . . . 12  |-  ( b  =  ( f `  e )  ->  (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  b ) )  =  ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  e )
) ) )
3635fveq1d 5634 . . . . . . . . . . 11  |-  ( b  =  ( f `  e )  ->  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  b )
) `  e )  =  ( ( (ldgIdlSeq `  R ) `  (
(RSpan `  P ) `  ( f `  e
) ) ) `  e ) )
3736sseq2d 3292 . . . . . . . . . 10  |-  ( b  =  ( f `  e )  ->  (
( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  b )
) `  e )  <->  ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )
3837ac6sfi 7248 . . . . . . . . 9  |-  ( ( ( 0 ... c
)  e.  Fin  /\  A. e  e.  ( 0 ... c ) E. b  e.  ( ~P a  i^i  Fin )
( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  b )
) `  e )
)  ->  E. f
( f : ( 0 ... c ) --> ( ~P a  i^i 
Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )
3926, 33, 38sylancr 644 . . . . . . . 8  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  E. f
( f : ( 0 ... c ) --> ( ~P a  i^i 
Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )
4039adantr 451 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  E. f ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )
41 simprl 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  f :
( 0 ... c
) --> ( ~P a  i^i  Fin ) )
42 frn 5501 . . . . . . . . . . . . . . . . 17  |-  ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  ->  ran  f  C_  ( ~P a  i^i  Fin )
)
4341, 42syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ran  f  C_  ( ~P a  i^i  Fin ) )
44 inss1 3477 . . . . . . . . . . . . . . . 16  |-  ( ~P a  i^i  Fin )  C_ 
~P a
4543, 44syl6ss 3277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ran  f  C_  ~P a )
46 uniss 3950 . . . . . . . . . . . . . . 15  |-  ( ran  f  C_  ~P a  ->  U. ran  f  C_  U. ~P a )
4745, 46syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  C_ 
U. ~P a )
48 unipw 4327 . . . . . . . . . . . . . 14  |-  U. ~P a  =  a
4947, 48syl6sseq 3310 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  C_  a )
50 simpllr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  a  e.  (LIdeal `  P ) )
51 eqid 2366 . . . . . . . . . . . . . . 15  |-  ( Base `  P )  =  (
Base `  P )
5251, 10lidlss 16171 . . . . . . . . . . . . . 14  |-  ( a  e.  (LIdeal `  P
)  ->  a  C_  ( Base `  P )
)
5350, 52syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  a  C_  ( Base `  P )
)
5449, 53sstrd 3275 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  C_  ( Base `  P
) )
55 fvex 5646 . . . . . . . . . . . . 13  |-  ( Base `  P )  e.  _V
5655elpw2 4277 . . . . . . . . . . . 12  |-  ( U. ran  f  e.  ~P ( Base `  P )  <->  U.
ran  f  C_  ( Base `  P ) )
5754, 56sylibr 203 . . . . . . . . . . 11  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  e.  ~P ( Base `  P
) )
58 ffn 5495 . . . . . . . . . . . . 13  |-  ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  ->  f  Fn  ( 0 ... c ) )
59 fniunfv 5894 . . . . . . . . . . . . 13  |-  ( f  Fn  ( 0 ... c )  ->  U_ g  e.  ( 0 ... c
) ( f `  g )  =  U. ran  f )
6041, 58, 593syl 18 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U_ g  e.  ( 0 ... c
) ( f `  g )  =  U. ran  f )
61 inss2 3478 . . . . . . . . . . . . . . 15  |-  ( ~P a  i^i  Fin )  C_ 
Fin
62 ffvelrn 5770 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  /\  g  e.  ( 0 ... c ) )  ->  ( f `  g )  e.  ( ~P a  i^i  Fin ) )
6341, 62sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e.  ( 0 ... c
) )  ->  (
f `  g )  e.  ( ~P a  i^i 
Fin ) )
6461, 63sseldi 3264 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e.  ( 0 ... c
) )  ->  (
f `  g )  e.  Fin )
6564ralrimiva 2711 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  A. g  e.  ( 0 ... c
) ( f `  g )  e.  Fin )
66 iunfi 7291 . . . . . . . . . . . . 13  |-  ( ( ( 0 ... c
)  e.  Fin  /\  A. g  e.  ( 0 ... c ) ( f `  g )  e.  Fin )  ->  U_ g  e.  (
0 ... c ) ( f `  g )  e.  Fin )
6726, 65, 66sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U_ g  e.  ( 0 ... c
) ( f `  g )  e.  Fin )
6860, 67eqeltrrd 2441 . . . . . . . . . . 11  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  e.  Fin )
69 elin 3446 . . . . . . . . . . 11  |-  ( U. ran  f  e.  ( ~P ( Base `  P
)  i^i  Fin )  <->  ( U. ran  f  e. 
~P ( Base `  P
)  /\  U. ran  f  e.  Fin ) )
7057, 68, 69sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  e.  ( ~P ( Base `  P )  i^i  Fin ) )
711ad3antrrr 710 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  R  e.  Ring )
724ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  P  e.  Ring )
7327, 51, 10rspcl 16184 . . . . . . . . . . . . 13  |-  ( ( P  e.  Ring  /\  U. ran  f  C_  ( Base `  P ) )  -> 
( (RSpan `  P
) `  U. ran  f
)  e.  (LIdeal `  P ) )
7472, 54, 73syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (RSpan `  P ) `  U. ran  f )  e.  (LIdeal `  P ) )
7527, 10rspssp 16188 . . . . . . . . . . . . 13  |-  ( ( P  e.  Ring  /\  a  e.  (LIdeal `  P )  /\  U. ran  f  C_  a )  ->  (
(RSpan `  P ) `  U. ran  f ) 
C_  a )
7672, 50, 49, 75syl3anc 1183 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (RSpan `  P ) `  U. ran  f )  C_  a
)
77 nn0re 10123 . . . . . . . . . . . . . . 15  |-  ( g  e.  NN0  ->  g  e.  RR )
7877adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  g  e.  RR )
79 simplrl 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  c  e.  NN0 )
8079adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  c  e.  NN0 )
8180nn0red 10168 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  c  e.  RR )
82 simprl 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
g  e.  NN0 )
83 simprr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
g  <_  c )
8479adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
c  e.  NN0 )
85 fznn0 11004 . . . . . . . . . . . . . . . . . . 19  |-  ( c  e.  NN0  ->  ( g  e.  ( 0 ... c )  <->  ( g  e.  NN0  /\  g  <_ 
c ) ) )
8684, 85syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( g  e.  ( 0 ... c )  <-> 
( g  e.  NN0  /\  g  <_  c )
) )
8782, 83, 86mpbir2and 888 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
g  e.  ( 0 ... c ) )
88 simplrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  ->  A. e  e.  (
0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) )
89 fveq2 5632 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  g  ->  (
( (ldgIdlSeq `  R ) `  a ) `  e
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  g
) )
90 fveq2 5632 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( e  =  g  ->  (
f `  e )  =  ( f `  g ) )
9190fveq2d 5636 . . . . . . . . . . . . . . . . . . . . 21  |-  ( e  =  g  ->  (
(RSpan `  P ) `  ( f `  e
) )  =  ( (RSpan `  P ) `  ( f `  g
) ) )
9291fveq2d 5636 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  =  g  ->  (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  ( f `  e
) ) )  =  ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  g )
) ) )
93 id 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  =  g  ->  e  =  g )
9492, 93fveq12d 5638 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  g  ->  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e )  =  ( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  g )
) ) `  g
) )
9589, 94sseq12d 3293 . . . . . . . . . . . . . . . . . 18  |-  ( e  =  g  ->  (
( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e )  <->  ( (
(ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  ( f `  g
) ) ) `  g ) ) )
9695rspcva 2967 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  ( 0 ... c )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) )  ->  ( ( (ldgIdlSeq `  R ) `  a
) `  g )  C_  ( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  g )
) ) `  g
) )
9787, 88, 96syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  g ) ) ) `
 g ) )
9871adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  ->  R  e.  Ring )
99 fvssunirn 5658 . . . . . . . . . . . . . . . . . . . 20  |-  ( f `
 g )  C_  U.
ran  f
10099, 54syl5ss 3276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( f `  g )  C_  ( Base `  P ) )
10127, 51, 10rspcl 16184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  Ring  /\  (
f `  g )  C_  ( Base `  P
) )  ->  (
(RSpan `  P ) `  ( f `  g
) )  e.  (LIdeal `  P ) )
10272, 100, 101syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (RSpan `  P ) `  (
f `  g )
)  e.  (LIdeal `  P ) )
103102adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( (RSpan `  P
) `  ( f `  g ) )  e.  (LIdeal `  P )
)
10474adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( (RSpan `  P
) `  U. ran  f
)  e.  (LIdeal `  P ) )
10571, 3syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  P  e.  Ring )
106105adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  ->  P  e.  Ring )
10727, 51rspssid 16185 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Ring  /\  U. ran  f  C_  ( Base `  P ) )  ->  U. ran  f  C_  (
(RSpan `  P ) `  U. ran  f ) )
10872, 54, 107syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  C_  ( (RSpan `  P
) `  U. ran  f
) )
109108adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  ->  U. ran  f  C_  (
(RSpan `  P ) `  U. ran  f ) )
11099, 109syl5ss 3276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( f `  g
)  C_  ( (RSpan `  P ) `  U. ran  f ) )
11127, 10rspssp 16188 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Ring  /\  (
(RSpan `  P ) `  U. ran  f )  e.  (LIdeal `  P
)  /\  ( f `  g )  C_  (
(RSpan `  P ) `  U. ran  f ) )  ->  ( (RSpan `  P ) `  (
f `  g )
)  C_  ( (RSpan `  P ) `  U. ran  f ) )
112106, 104, 110, 111syl3anc 1183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( (RSpan `  P
) `  ( f `  g ) )  C_  ( (RSpan `  P ) `  U. ran  f ) )
1132, 10, 11, 98, 103, 104, 112, 82hbtlem3 26922 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  g )
) ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
11497, 113sstrd 3275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )
115114anassrs 629 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  /\  g  <_  c )  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
116 nn0z 10197 . . . . . . . . . . . . . . . . . . . 20  |-  ( c  e.  NN0  ->  c  e.  ZZ )
117116adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  NN0  /\  ( g  e.  NN0  /\  c  <_  g )
)  ->  c  e.  ZZ )
118 nn0z 10197 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  e.  NN0  ->  g  e.  ZZ )
119118ad2antrl 708 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  NN0  /\  ( g  e.  NN0  /\  c  <_  g )
)  ->  g  e.  ZZ )
120 simprr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  NN0  /\  ( g  e.  NN0  /\  c  <_  g )
)  ->  c  <_  g )
121 eluz2 10387 . . . . . . . . . . . . . . . . . . 19  |-  ( g  e.  ( ZZ>= `  c
)  <->  ( c  e.  ZZ  /\  g  e.  ZZ  /\  c  <_ 
g ) )
122117, 119, 120, 121syl3anbrc 1137 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  e.  NN0  /\  ( g  e.  NN0  /\  c  <_  g )
)  ->  g  e.  ( ZZ>= `  c )
)
12379, 122sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
g  e.  ( ZZ>= `  c ) )
124 simprr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
125124ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  ->  A. d  e.  ( ZZ>=
`  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
126 fveq2 5632 . . . . . . . . . . . . . . . . . . 19  |-  ( d  =  g  ->  (
( (ldgIdlSeq `  R ) `  a ) `  d
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  g
) )
127126eqeq1d 2374 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  g  ->  (
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c )  <->  ( (
(ldgIdlSeq `  R ) `  a ) `  g
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
) ) )
128127rspcva 2967 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  ( ZZ>= `  c )  /\  A. d  e.  ( ZZ>= `  c ) ( ( (ldgIdlSeq `  R ) `  a ) `  d
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
) )  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
) )
129123, 125, 128syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  g )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
13079nn0red 10168 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  c  e.  RR )
131130leidd 9486 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  c  <_  c )
132114expr 598 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  (
g  <_  c  ->  ( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) ) )
133132ralrimiva 2711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  A. g  e.  NN0  ( g  <_ 
c  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) ) )
134 breq1 4128 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  =  c  ->  (
g  <_  c  <->  c  <_  c ) )
135 fveq2 5632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g  =  c  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
) )
136 fveq2 5632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g  =  c  ->  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
)  =  ( ( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  c
) )
137135, 136sseq12d 3293 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  =  c  ->  (
( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
)  <->  ( ( (ldgIdlSeq `  R ) `  a
) `  c )  C_  ( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c ) ) )
138134, 137imbi12d 311 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  c  ->  (
( g  <_  c  ->  ( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )  <->  ( c  <_  c  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  c
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c ) ) ) )
139138rspcva 2967 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( c  e.  NN0  /\  A. g  e.  NN0  (
g  <_  c  ->  ( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) ) )  -> 
( c  <_  c  ->  ( ( (ldgIdlSeq `  R
) `  a ) `  c )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  c
) ) )
14079, 133, 139syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( c  <_  c  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  c
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c ) ) )
141131, 140mpd 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  c
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c ) )
142141adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  c )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  c
) )
14371adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  ->  R  e.  Ring )
14474adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( (RSpan `  P
) `  U. ran  f
)  e.  (LIdeal `  P ) )
14579adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
c  e.  NN0 )
146 simprl 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
g  e.  NN0 )
147 simprr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
c  <_  g )
1482, 10, 11, 143, 144, 145, 146, 147hbtlem4 26921 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )
149142, 148sstrd 3275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  c )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )
150129, 149eqsstrd 3298 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )
151150anassrs 629 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  /\  c  <_  g )  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
15278, 81, 115, 151lecasei 9073 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
153152ralrimiva 2711 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  A. g  e.  NN0  ( ( (ldgIdlSeq `  R ) `  a
) `  g )  C_  ( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
1542, 10, 11, 71, 74, 50, 76, 153hbtlem5 26923 . . . . . . . . . . 11  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (RSpan `  P ) `  U. ran  f )  =  a )
155154eqcomd 2371 . . . . . . . . . 10  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  a  =  ( (RSpan `  P ) `  U. ran  f ) )
156 fveq2 5632 . . . . . . . . . . . 12  |-  ( b  =  U. ran  f  ->  ( (RSpan `  P
) `  b )  =  ( (RSpan `  P ) `  U. ran  f ) )
157156eqeq2d 2377 . . . . . . . . . . 11  |-  ( b  =  U. ran  f  ->  ( a  =  ( (RSpan `  P ) `  b )  <->  a  =  ( (RSpan `  P ) `  U. ran  f ) ) )
158157rspcev 2969 . . . . . . . . . 10  |-  ( ( U. ran  f  e.  ( ~P ( Base `  P )  i^i  Fin )  /\  a  =  ( (RSpan `  P ) `  U. ran  f ) )  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) )
15970, 155, 158syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) )
160159ex 423 . . . . . . . 8  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  ( ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) )  ->  E. b  e.  ( ~P ( Base `  P
)  i^i  Fin )
a  =  ( (RSpan `  P ) `  b
) ) )
161160exlimdv 1641 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  ( E. f
( f : ( 0 ... c ) --> ( ~P a  i^i 
Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) )  ->  E. b  e.  ( ~P ( Base `  P
)  i^i  Fin )
a  =  ( (RSpan `  P ) `  b
) ) )
16240, 161mpd 14 . . . . . 6  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  E. b  e.  ( ~P ( Base `  P
)  i^i  Fin )
a  =  ( (RSpan `  P ) `  b
) )
163162expr 598 . . . . 5  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  c  e.  NN0 )  ->  ( A. d  e.  ( ZZ>= `  c ) ( ( (ldgIdlSeq `  R ) `  a ) `  d
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
)  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) ) )
164163rexlimdva 2752 . . . 4  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  ( E. c  e.  NN0  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c )  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) ) )
16525, 164mpd 14 . . 3  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) )
166165ralrimiva 2711 . 2  |-  ( R  e. LNoeR  ->  A. a  e.  (LIdeal `  P ) E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) )
16751, 10, 27islnr2 26909 . 2  |-  ( P  e. LNoeR 
<->  ( P  e.  Ring  /\ 
A. a  e.  (LIdeal `  P ) E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) ) )
1684, 166, 167sylanbrc 645 1  |-  ( R  e. LNoeR  ->  P  e. LNoeR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1546    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629    i^i cin 3237    C_ wss 3238   ~Pcpw 3714   U.cuni 3929   U_ciun 4007   class class class wbr 4125   ran crn 4793    Fn wfn 5353   -->wf 5354   ` cfv 5358  (class class class)co 5981   Fincfn 7006   RRcr 8883   0cc0 8884   1c1 8885    + caddc 8887    <_ cle 9015   NN0cn0 10114   ZZcz 10175   ZZ>=cuz 10381   ...cfz 10935   Basecbs 13356   Ringcrg 15547  LIdealclidl 16133  RSpancrsp 16134  Poly1cpl1 16462  NoeACScnacs 26368  LNoeRclnr 26904  ldgIdlSeqcldgis 26916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-ofr 6206  df-1st 6249  df-2nd 6250  df-tpos 6376  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-pm 6918  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-oi 7372  df-card 7719  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-fz 10936  df-fzo 11026  df-seq 11211  df-hash 11506  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ocomp 13437  df-ds 13438  df-unif 13439  df-0g 13614  df-gsum 13615  df-mre 13698  df-mrc 13699  df-acs 13701  df-preset 14272  df-drs 14273  df-poset 14290  df-ipo 14465  df-mnd 14577  df-mhm 14625  df-submnd 14626  df-grp 14699  df-minusg 14700  df-sbg 14701  df-mulg 14702  df-subg 14828  df-ghm 14891  df-cntz 15003  df-cmn 15301  df-abl 15302  df-mgp 15536  df-rng 15550  df-cring 15551  df-ur 15552  df-oppr 15615  df-dvdsr 15633  df-unit 15634  df-invr 15664  df-subrg 15753  df-lmod 15839  df-lss 15900  df-lsp 15939  df-sra 16135  df-rgmod 16136  df-lidl 16137  df-rsp 16138  df-rlreg 16234  df-ascl 16265  df-psr 16308  df-mvr 16309  df-mpl 16310  df-opsr 16316  df-psr1 16467  df-vr1 16468  df-ply1 16469  df-coe1 16472  df-cnfld 16594  df-mdeg 19656  df-deg1 19657  df-nacs 26369  df-lfig 26757  df-lnm 26765  df-lnr 26905  df-ldgis 26917
  Copyright terms: Public domain W3C validator