Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbt Unicode version

Theorem hbt 26702
Description: The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
hbt.p  |-  P  =  (Poly1 `  R )
Assertion
Ref Expression
hbt  |-  ( R  e. LNoeR  ->  P  e. LNoeR )

Proof of Theorem hbt
StepHypRef Expression
1 lnrrng 26684 . . 3  |-  ( R  e. LNoeR  ->  R  e.  Ring )
2 hbt.p . . . 4  |-  P  =  (Poly1 `  R )
32ply1rng 16289 . . 3  |-  ( R  e.  Ring  ->  P  e. 
Ring )
41, 3syl 17 . 2  |-  ( R  e. LNoeR  ->  P  e.  Ring )
5 eqid 2258 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
6 eqid 2258 . . . . . . . 8  |-  (LIdeal `  R )  =  (LIdeal `  R )
75, 6islnr3 26687 . . . . . . 7  |-  ( R  e. LNoeR 
<->  ( R  e.  Ring  /\  (LIdeal `  R )  e.  (NoeACS `  ( Base `  R ) ) ) )
87simprbi 452 . . . . . 6  |-  ( R  e. LNoeR  ->  (LIdeal `  R )  e.  (NoeACS `  ( Base `  R ) ) )
98adantr 453 . . . . 5  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  (LIdeal `  R
)  e.  (NoeACS `  ( Base `  R )
) )
10 eqid 2258 . . . . . . 7  |-  (LIdeal `  P )  =  (LIdeal `  P )
11 eqid 2258 . . . . . . 7  |-  (ldgIdlSeq `  R
)  =  (ldgIdlSeq `  R
)
122, 10, 11, 6hbtlem7 26697 . . . . . 6  |-  ( ( R  e.  Ring  /\  a  e.  (LIdeal `  P )
)  ->  ( (ldgIdlSeq `  R ) `  a
) : NN0 --> (LIdeal `  R ) )
131, 12sylan 459 . . . . 5  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  ( (ldgIdlSeq `  R ) `  a
) : NN0 --> (LIdeal `  R ) )
141ad2antrr 709 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  R  e.  Ring )
15 simplr 734 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  a  e.  (LIdeal `  P ) )
16 simpr 449 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  b  e.  NN0 )
17 peano2nn0 9972 . . . . . . . 8  |-  ( b  e.  NN0  ->  ( b  +  1 )  e. 
NN0 )
1817adantl 454 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  ( b  +  1 )  e. 
NN0 )
19 nn0re 9942 . . . . . . . . 9  |-  ( b  e.  NN0  ->  b  e.  RR )
2019lep1d 9656 . . . . . . . 8  |-  ( b  e.  NN0  ->  b  <_ 
( b  +  1 ) )
2120adantl 454 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  b  <_  ( b  +  1 ) )
222, 10, 11, 14, 15, 16, 18, 21hbtlem4 26698 . . . . . 6  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  b  e.  NN0 )  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  b
)  C_  ( (
(ldgIdlSeq `  R ) `  a ) `  (
b  +  1 ) ) )
2322ralrimiva 2601 . . . . 5  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  A. b  e.  NN0  ( ( (ldgIdlSeq `  R ) `  a
) `  b )  C_  ( ( (ldgIdlSeq `  R
) `  a ) `  ( b  +  1 ) ) )
24 nacsfix 26155 . . . . 5  |-  ( ( (LIdeal `  R )  e.  (NoeACS `  ( Base `  R ) )  /\  ( (ldgIdlSeq `  R ) `  a ) : NN0 --> (LIdeal `  R )  /\  A. b  e.  NN0  ( ( (ldgIdlSeq `  R ) `  a ) `  b
)  C_  ( (
(ldgIdlSeq `  R ) `  a ) `  (
b  +  1 ) ) )  ->  E. c  e.  NN0  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
259, 13, 23, 24syl3anc 1187 . . . 4  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  E. c  e.  NN0  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
26 fzfi 11001 . . . . . . . . 9  |-  ( 0 ... c )  e. 
Fin
27 eqid 2258 . . . . . . . . . . 11  |-  (RSpan `  P )  =  (RSpan `  P )
28 simpll 733 . . . . . . . . . . 11  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  e  e.  ( 0 ... c
) )  ->  R  e. LNoeR )
29 simplr 734 . . . . . . . . . . 11  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  e  e.  ( 0 ... c
) )  ->  a  e.  (LIdeal `  P )
)
30 elfznn0 10789 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 ... c )  ->  e  e.  NN0 )
3130adantl 454 . . . . . . . . . . 11  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  e  e.  ( 0 ... c
) )  ->  e  e.  NN0 )
322, 10, 11, 27, 28, 29, 31hbtlem6 26701 . . . . . . . . . 10  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  e  e.  ( 0 ... c
) )  ->  E. b  e.  ( ~P a  i^i 
Fin ) ( ( (ldgIdlSeq `  R ) `  a ) `  e
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  b ) ) `  e ) )
3332ralrimiva 2601 . . . . . . . . 9  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  A. e  e.  ( 0 ... c
) E. b  e.  ( ~P a  i^i 
Fin ) ( ( (ldgIdlSeq `  R ) `  a ) `  e
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  b ) ) `  e ) )
34 fveq2 5458 . . . . . . . . . . . . 13  |-  ( b  =  ( f `  e )  ->  (
(RSpan `  P ) `  b )  =  ( (RSpan `  P ) `  ( f `  e
) ) )
3534fveq2d 5462 . . . . . . . . . . . 12  |-  ( b  =  ( f `  e )  ->  (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  b ) )  =  ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  e )
) ) )
3635fveq1d 5460 . . . . . . . . . . 11  |-  ( b  =  ( f `  e )  ->  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  b )
) `  e )  =  ( ( (ldgIdlSeq `  R ) `  (
(RSpan `  P ) `  ( f `  e
) ) ) `  e ) )
3736sseq2d 3181 . . . . . . . . . 10  |-  ( b  =  ( f `  e )  ->  (
( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  b )
) `  e )  <->  ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )
3837ac6sfi 7069 . . . . . . . . 9  |-  ( ( ( 0 ... c
)  e.  Fin  /\  A. e  e.  ( 0 ... c ) E. b  e.  ( ~P a  i^i  Fin )
( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  b )
) `  e )
)  ->  E. f
( f : ( 0 ... c ) --> ( ~P a  i^i 
Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )
3926, 33, 38sylancr 647 . . . . . . . 8  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  E. f
( f : ( 0 ... c ) --> ( ~P a  i^i 
Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )
4039adantr 453 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  E. f ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )
41 simprl 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  f :
( 0 ... c
) --> ( ~P a  i^i  Fin ) )
42 frn 5333 . . . . . . . . . . . . . . . . 17  |-  ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  ->  ran  f  C_  ( ~P a  i^i  Fin )
)
4341, 42syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ran  f  C_  ( ~P a  i^i  Fin ) )
44 inss1 3364 . . . . . . . . . . . . . . . 16  |-  ( ~P a  i^i  Fin )  C_ 
~P a
4543, 44syl6ss 3166 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ran  f  C_  ~P a )
46 uniss 3822 . . . . . . . . . . . . . . 15  |-  ( ran  f  C_  ~P a  ->  U. ran  f  C_  U. ~P a )
4745, 46syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  C_ 
U. ~P a )
48 unipw 4196 . . . . . . . . . . . . . 14  |-  U. ~P a  =  a
4947, 48syl6sseq 3199 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  C_  a )
50 simpllr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  a  e.  (LIdeal `  P ) )
51 eqid 2258 . . . . . . . . . . . . . . 15  |-  ( Base `  P )  =  (
Base `  P )
5251, 10lidlss 15924 . . . . . . . . . . . . . 14  |-  ( a  e.  (LIdeal `  P
)  ->  a  C_  ( Base `  P )
)
5350, 52syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  a  C_  ( Base `  P )
)
5449, 53sstrd 3164 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  C_  ( Base `  P
) )
55 fvex 5472 . . . . . . . . . . . . 13  |-  ( Base `  P )  e.  _V
5655elpw2 4142 . . . . . . . . . . . 12  |-  ( U. ran  f  e.  ~P ( Base `  P )  <->  U.
ran  f  C_  ( Base `  P ) )
5754, 56sylibr 205 . . . . . . . . . . 11  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  e.  ~P ( Base `  P
) )
58 ffn 5327 . . . . . . . . . . . . 13  |-  ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  ->  f  Fn  ( 0 ... c ) )
59 fniunfv 5707 . . . . . . . . . . . . 13  |-  ( f  Fn  ( 0 ... c )  ->  U_ g  e.  ( 0 ... c
) ( f `  g )  =  U. ran  f )
6041, 58, 593syl 20 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U_ g  e.  ( 0 ... c
) ( f `  g )  =  U. ran  f )
61 inss2 3365 . . . . . . . . . . . . . . 15  |-  ( ~P a  i^i  Fin )  C_ 
Fin
62 ffvelrn 5597 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  /\  g  e.  ( 0 ... c ) )  ->  ( f `  g )  e.  ( ~P a  i^i  Fin ) )
6341, 62sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e.  ( 0 ... c
) )  ->  (
f `  g )  e.  ( ~P a  i^i 
Fin ) )
6461, 63sseldi 3153 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e.  ( 0 ... c
) )  ->  (
f `  g )  e.  Fin )
6564ralrimiva 2601 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  A. g  e.  ( 0 ... c
) ( f `  g )  e.  Fin )
66 iunfi 7112 . . . . . . . . . . . . 13  |-  ( ( ( 0 ... c
)  e.  Fin  /\  A. g  e.  ( 0 ... c ) ( f `  g )  e.  Fin )  ->  U_ g  e.  (
0 ... c ) ( f `  g )  e.  Fin )
6726, 65, 66sylancr 647 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U_ g  e.  ( 0 ... c
) ( f `  g )  e.  Fin )
6860, 67eqeltrrd 2333 . . . . . . . . . . 11  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  e.  Fin )
69 elin 3333 . . . . . . . . . . 11  |-  ( U. ran  f  e.  ( ~P ( Base `  P
)  i^i  Fin )  <->  ( U. ran  f  e. 
~P ( Base `  P
)  /\  U. ran  f  e.  Fin ) )
7057, 68, 69sylanbrc 648 . . . . . . . . . 10  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  e.  ( ~P ( Base `  P )  i^i  Fin ) )
711ad3antrrr 713 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  R  e.  Ring )
724ad3antrrr 713 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  P  e.  Ring )
7327, 51, 10rspcl 15937 . . . . . . . . . . . . 13  |-  ( ( P  e.  Ring  /\  U. ran  f  C_  ( Base `  P ) )  -> 
( (RSpan `  P
) `  U. ran  f
)  e.  (LIdeal `  P ) )
7472, 54, 73syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (RSpan `  P ) `  U. ran  f )  e.  (LIdeal `  P ) )
7527, 10rspssp 15941 . . . . . . . . . . . . 13  |-  ( ( P  e.  Ring  /\  a  e.  (LIdeal `  P )  /\  U. ran  f  C_  a )  ->  (
(RSpan `  P ) `  U. ran  f ) 
C_  a )
7672, 50, 49, 75syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (RSpan `  P ) `  U. ran  f )  C_  a
)
77 nn0re 9942 . . . . . . . . . . . . . . 15  |-  ( g  e.  NN0  ->  g  e.  RR )
7877adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  g  e.  RR )
79 simplrl 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  c  e.  NN0 )
8079adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  c  e.  NN0 )
8180nn0red 9987 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  c  e.  RR )
82 simprl 735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
g  e.  NN0 )
83 simprr 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
g  <_  c )
8479adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
c  e.  NN0 )
85 fznn0 10818 . . . . . . . . . . . . . . . . . . 19  |-  ( c  e.  NN0  ->  ( g  e.  ( 0 ... c )  <->  ( g  e.  NN0  /\  g  <_ 
c ) ) )
8684, 85syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( g  e.  ( 0 ... c )  <-> 
( g  e.  NN0  /\  g  <_  c )
) )
8782, 83, 86mpbir2and 893 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
g  e.  ( 0 ... c ) )
88 simplrr 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  ->  A. e  e.  (
0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) )
89 fveq2 5458 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  g  ->  (
( (ldgIdlSeq `  R ) `  a ) `  e
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  g
) )
90 fveq2 5458 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( e  =  g  ->  (
f `  e )  =  ( f `  g ) )
9190fveq2d 5462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( e  =  g  ->  (
(RSpan `  P ) `  ( f `  e
) )  =  ( (RSpan `  P ) `  ( f `  g
) ) )
9291fveq2d 5462 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  =  g  ->  (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  ( f `  e
) ) )  =  ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  g )
) ) )
93 id 21 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  =  g  ->  e  =  g )
9492, 93fveq12d 5464 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  g  ->  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e )  =  ( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  g )
) ) `  g
) )
9589, 94sseq12d 3182 . . . . . . . . . . . . . . . . . 18  |-  ( e  =  g  ->  (
( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e )  <->  ( (
(ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  ( f `  g
) ) ) `  g ) ) )
9695rcla4va 2857 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  ( 0 ... c )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) )  ->  ( ( (ldgIdlSeq `  R ) `  a
) `  g )  C_  ( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  g )
) ) `  g
) )
9787, 88, 96syl2anc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  g ) ) ) `
 g ) )
9871adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  ->  R  e.  Ring )
99 fvssunirn 5485 . . . . . . . . . . . . . . . . . . . 20  |-  ( f `
 g )  C_  U.
ran  f
10099, 54syl5ss 3165 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( f `  g )  C_  ( Base `  P ) )
10127, 51, 10rspcl 15937 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  Ring  /\  (
f `  g )  C_  ( Base `  P
) )  ->  (
(RSpan `  P ) `  ( f `  g
) )  e.  (LIdeal `  P ) )
10272, 100, 101syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (RSpan `  P ) `  (
f `  g )
)  e.  (LIdeal `  P ) )
103102adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( (RSpan `  P
) `  ( f `  g ) )  e.  (LIdeal `  P )
)
10474adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( (RSpan `  P
) `  U. ran  f
)  e.  (LIdeal `  P ) )
10571, 3syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  P  e.  Ring )
106105adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  ->  P  e.  Ring )
10727, 51rspssid 15938 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Ring  /\  U. ran  f  C_  ( Base `  P ) )  ->  U. ran  f  C_  (
(RSpan `  P ) `  U. ran  f ) )
10872, 54, 107syl2anc 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  U. ran  f  C_  ( (RSpan `  P
) `  U. ran  f
) )
109108adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  ->  U. ran  f  C_  (
(RSpan `  P ) `  U. ran  f ) )
11099, 109syl5ss 3165 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( f `  g
)  C_  ( (RSpan `  P ) `  U. ran  f ) )
11127, 10rspssp 15941 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Ring  /\  (
(RSpan `  P ) `  U. ran  f )  e.  (LIdeal `  P
)  /\  ( f `  g )  C_  (
(RSpan `  P ) `  U. ran  f ) )  ->  ( (RSpan `  P ) `  (
f `  g )
)  C_  ( (RSpan `  P ) `  U. ran  f ) )
112106, 104, 110, 111syl3anc 1187 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( (RSpan `  P
) `  ( f `  g ) )  C_  ( (RSpan `  P ) `  U. ran  f ) )
1132, 10, 11, 98, 103, 104, 112, 82hbtlem3 26699 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  (
f `  g )
) ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
11497, 113sstrd 3164 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  g  <_  c ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )
115114anassrs 632 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  /\  g  <_  c )  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
116 nn0z 10014 . . . . . . . . . . . . . . . . . . . 20  |-  ( c  e.  NN0  ->  c  e.  ZZ )
117116adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  NN0  /\  ( g  e.  NN0  /\  c  <_  g )
)  ->  c  e.  ZZ )
118 nn0z 10014 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  e.  NN0  ->  g  e.  ZZ )
119118ad2antrl 711 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  NN0  /\  ( g  e.  NN0  /\  c  <_  g )
)  ->  g  e.  ZZ )
120 simprr 736 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  NN0  /\  ( g  e.  NN0  /\  c  <_  g )
)  ->  c  <_  g )
121 eluz2 10204 . . . . . . . . . . . . . . . . . . 19  |-  ( g  e.  ( ZZ>= `  c
)  <->  ( c  e.  ZZ  /\  g  e.  ZZ  /\  c  <_ 
g ) )
122117, 119, 120, 121syl3anbrc 1141 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  e.  NN0  /\  ( g  e.  NN0  /\  c  <_  g )
)  ->  g  e.  ( ZZ>= `  c )
)
12379, 122sylan 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
g  e.  ( ZZ>= `  c ) )
124 simprr 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
125124ad2antrr 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  ->  A. d  e.  ( ZZ>=
`  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
126 fveq2 5458 . . . . . . . . . . . . . . . . . . 19  |-  ( d  =  g  ->  (
( (ldgIdlSeq `  R ) `  a ) `  d
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  g
) )
127126eqeq1d 2266 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  g  ->  (
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c )  <->  ( (
(ldgIdlSeq `  R ) `  a ) `  g
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
) ) )
128127rcla4va 2857 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  ( ZZ>= `  c )  /\  A. d  e.  ( ZZ>= `  c ) ( ( (ldgIdlSeq `  R ) `  a ) `  d
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
) )  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
) )
129123, 125, 128syl2anc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  g )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) )
13079nn0red 9987 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  c  e.  RR )
131130leidd 9307 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  c  <_  c )
132114expr 601 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  (
g  <_  c  ->  ( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) ) )
133132ralrimiva 2601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  A. g  e.  NN0  ( g  <_ 
c  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) ) )
134 breq1 4000 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  =  c  ->  (
g  <_  c  <->  c  <_  c ) )
135 fveq2 5458 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g  =  c  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
) )
136 fveq2 5458 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( g  =  c  ->  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
)  =  ( ( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  c
) )
137135, 136sseq12d 3182 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  =  c  ->  (
( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
)  <->  ( ( (ldgIdlSeq `  R ) `  a
) `  c )  C_  ( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c ) ) )
138134, 137imbi12d 313 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  c  ->  (
( g  <_  c  ->  ( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )  <->  ( c  <_  c  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  c
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c ) ) ) )
139138rcla4va 2857 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( c  e.  NN0  /\  A. g  e.  NN0  (
g  <_  c  ->  ( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) ) )  -> 
( c  <_  c  ->  ( ( (ldgIdlSeq `  R
) `  a ) `  c )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  c
) ) )
14079, 133, 139syl2anc 645 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( c  <_  c  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  c
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c ) ) )
141131, 140mpd 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (
(ldgIdlSeq `  R ) `  a ) `  c
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c ) )
142141adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  c )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  c
) )
14371adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  ->  R  e.  Ring )
14474adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( (RSpan `  P
) `  U. ran  f
)  e.  (LIdeal `  P ) )
14579adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
c  e.  NN0 )
146 simprl 735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
g  e.  NN0 )
147 simprr 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
c  <_  g )
1482, 10, 11, 143, 144, 145, 146, 147hbtlem4 26698 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  U. ran  f ) ) `  c )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )
149142, 148sstrd 3164 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  c )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )
150129, 149eqsstrd 3187 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  ( g  e.  NN0  /\  c  <_  g ) )  -> 
( ( (ldgIdlSeq `  R
) `  a ) `  g )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  U. ran  f
) ) `  g
) )
151150anassrs 632 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  /\  c  <_  g )  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
15278, 81, 115, 151lecasei 8894 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e. 
NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  /\  g  e. 
NN0 )  ->  (
( (ldgIdlSeq `  R ) `  a ) `  g
)  C_  ( (
(ldgIdlSeq `  R ) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
153152ralrimiva 2601 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  A. g  e.  NN0  ( ( (ldgIdlSeq `  R ) `  a
) `  g )  C_  ( ( (ldgIdlSeq `  R
) `  ( (RSpan `  P ) `  U. ran  f ) ) `  g ) )
1542, 10, 11, 71, 74, 50, 76, 153hbtlem5 26700 . . . . . . . . . . 11  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  ( (RSpan `  P ) `  U. ran  f )  =  a )
155154eqcomd 2263 . . . . . . . . . 10  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  a  =  ( (RSpan `  P ) `  U. ran  f ) )
156 fveq2 5458 . . . . . . . . . . . 12  |-  ( b  =  U. ran  f  ->  ( (RSpan `  P
) `  b )  =  ( (RSpan `  P ) `  U. ran  f ) )
157156eqeq2d 2269 . . . . . . . . . . 11  |-  ( b  =  U. ran  f  ->  ( a  =  ( (RSpan `  P ) `  b )  <->  a  =  ( (RSpan `  P ) `  U. ran  f ) ) )
158157rcla4ev 2859 . . . . . . . . . 10  |-  ( ( U. ran  f  e.  ( ~P ( Base `  P )  i^i  Fin )  /\  a  =  ( (RSpan `  P ) `  U. ran  f ) )  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) )
15970, 155, 158syl2anc 645 . . . . . . . . 9  |-  ( ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P ) )  /\  ( c  e.  NN0  /\ 
A. d  e.  (
ZZ>= `  c ) ( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  /\  ( f : ( 0 ... c
) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) ) )  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) )
160159ex 425 . . . . . . . 8  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  ( ( f : ( 0 ... c ) --> ( ~P a  i^i  Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) )  ->  E. b  e.  ( ~P ( Base `  P
)  i^i  Fin )
a  =  ( (RSpan `  P ) `  b
) ) )
161160exlimdv 1933 . . . . . . 7  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  ( E. f
( f : ( 0 ... c ) --> ( ~P a  i^i 
Fin )  /\  A. e  e.  ( 0 ... c ) ( ( (ldgIdlSeq `  R
) `  a ) `  e )  C_  (
( (ldgIdlSeq `  R ) `  ( (RSpan `  P
) `  ( f `  e ) ) ) `
 e ) )  ->  E. b  e.  ( ~P ( Base `  P
)  i^i  Fin )
a  =  ( (RSpan `  P ) `  b
) ) )
16240, 161mpd 16 . . . . . 6  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  ( c  e.  NN0  /\  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c ) ) )  ->  E. b  e.  ( ~P ( Base `  P
)  i^i  Fin )
a  =  ( (RSpan `  P ) `  b
) )
163162expr 601 . . . . 5  |-  ( ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  /\  c  e.  NN0 )  ->  ( A. d  e.  ( ZZ>= `  c ) ( ( (ldgIdlSeq `  R ) `  a ) `  d
)  =  ( ( (ldgIdlSeq `  R ) `  a ) `  c
)  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) ) )
164163rexlimdva 2642 . . . 4  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  ( E. c  e.  NN0  A. d  e.  ( ZZ>= `  c )
( ( (ldgIdlSeq `  R
) `  a ) `  d )  =  ( ( (ldgIdlSeq `  R
) `  a ) `  c )  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) ) )
16525, 164mpd 16 . . 3  |-  ( ( R  e. LNoeR  /\  a  e.  (LIdeal `  P )
)  ->  E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) )
166165ralrimiva 2601 . 2  |-  ( R  e. LNoeR  ->  A. a  e.  (LIdeal `  P ) E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) )
16751, 10, 27islnr2 26686 . 2  |-  ( P  e. LNoeR 
<->  ( P  e.  Ring  /\ 
A. a  e.  (LIdeal `  P ) E. b  e.  ( ~P ( Base `  P )  i^i  Fin ) a  =  ( (RSpan `  P ) `  b ) ) )
1684, 166, 167sylanbrc 648 1  |-  ( R  e. LNoeR  ->  P  e. LNoeR )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519    i^i cin 3126    C_ wss 3127   ~Pcpw 3599   U.cuni 3801   U_ciun 3879   class class class wbr 3997   ran crn 4662    Fn wfn 4668   -->wf 4669   ` cfv 4673  (class class class)co 5792   Fincfn 6831   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    <_ cle 8836   NN0cn0 9933   ZZcz 9992   ZZ>=cuz 10198   ...cfz 10749   Basecbs 13111   Ringcrg 15300  LIdealclidl 15886  RSpancrsp 15887  Poly1cpl1 16215  NoeACScnacs 26145  LNoeRclnr 26681  ldgIdlSeqcldgis 26693
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-ofr 6013  df-1st 6056  df-2nd 6057  df-tpos 6168  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-fz 10750  df-fzo 10838  df-seq 11014  df-hash 11305  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ocomp 13192  df-ds 13193  df-0g 13367  df-gsum 13368  df-mre 13451  df-mrc 13452  df-acs 13454  df-preset 14025  df-drs 14026  df-poset 14043  df-ipo 14218  df-mnd 14330  df-mhm 14378  df-submnd 14379  df-grp 14452  df-minusg 14453  df-sbg 14454  df-mulg 14455  df-subg 14581  df-ghm 14644  df-cntz 14756  df-cmn 15054  df-abl 15055  df-mgp 15289  df-ring 15303  df-cring 15304  df-ur 15305  df-oppr 15368  df-dvdsr 15386  df-unit 15387  df-invr 15417  df-subrg 15506  df-lmod 15592  df-lss 15653  df-lsp 15692  df-sra 15888  df-rgmod 15889  df-lidl 15890  df-rsp 15891  df-rlreg 15987  df-ascl 16018  df-psr 16061  df-mvr 16062  df-mpl 16063  df-opsr 16069  df-psr1 16220  df-vr1 16221  df-ply1 16222  df-coe1 16225  df-cnfld 16341  df-mdeg 19404  df-deg1 19405  df-nacs 26146  df-lfig 26534  df-lnm 26542  df-lnr 26682  df-ldgis 26694
  Copyright terms: Public domain W3C validator