HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hcau Unicode version

Theorem hcau 21759
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hcau  |-  ( F  e.  Cauchy 
<->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
Distinct variable group:    x, y, z, F

Proof of Theorem hcau
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq1 5485 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
2 fveq1 5485 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
31, 2oveq12d 5838 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  y
)  -h  ( f `
 z ) )  =  ( ( F `
 y )  -h  ( F `  z
) ) )
43fveq2d 5490 . . . . . 6  |-  ( f  =  F  ->  ( normh `  ( ( f `
 y )  -h  ( f `  z
) ) )  =  ( normh `  ( ( F `  y )  -h  ( F `  z
) ) ) )
54breq1d 4034 . . . . 5  |-  ( f  =  F  ->  (
( normh `  ( (
f `  y )  -h  ( f `  z
) ) )  < 
x  <->  ( normh `  (
( F `  y
)  -h  ( F `
 z ) ) )  <  x ) )
65rexralbidv 2588 . . . 4  |-  ( f  =  F  ->  ( E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  y )  -h  (
f `  z )
) )  <  x  <->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
76ralbidv 2564 . . 3  |-  ( f  =  F  ->  ( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( (
f `  y )  -h  ( f `  z
) ) )  < 
x  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
8 df-hcau 21549 . . 3  |-  Cauchy  =  {
f  e.  ( ~H 
^m  NN )  | 
A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  y )  -h  (
f `  z )
) )  <  x }
97, 8elrab2 2926 . 2  |-  ( F  e.  Cauchy 
<->  ( F  e.  ( ~H  ^m  NN )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
10 ax-hilex 21575 . . . 4  |-  ~H  e.  _V
11 nnex 9748 . . . 4  |-  NN  e.  _V
1210, 11elmap 6792 . . 3  |-  ( F  e.  ( ~H  ^m  NN )  <->  F : NN --> ~H )
1312anbi1i 676 . 2  |-  ( ( F  e.  ( ~H 
^m  NN )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  y )  -h  ( F `  z
) ) )  < 
x )  <->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  y )  -h  ( F `  z
) ) )  < 
x ) )
149, 13bitri 240 1  |-  ( F  e.  Cauchy 
<->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544   E.wrex 2545   class class class wbr 4024   -->wf 5217   ` cfv 5221  (class class class)co 5820    ^m cmap 6768    < clt 8863   NNcn 9742   ZZ>=cuz 10226   RR+crp 10350   ~Hchil 21495   normhcno 21499    -h cmv 21501   Cauchyccau 21502
This theorem is referenced by:  hcauseq  21760  hcaucvg  21761  seq1hcau  21762  chscllem2  22213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-i2m1 8801  ax-1ne0 8802  ax-rrecex 8805  ax-cnre 8806  ax-hilex 21575
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-map 6770  df-nn 9743  df-hcau 21549
  Copyright terms: Public domain W3C validator