HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hcau Unicode version

Theorem hcau 21765
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hcau  |-  ( F  e.  Cauchy 
<->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
Distinct variable group:    x, y, z, F

Proof of Theorem hcau
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq1 5526 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
2 fveq1 5526 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
31, 2oveq12d 5878 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  y
)  -h  ( f `
 z ) )  =  ( ( F `
 y )  -h  ( F `  z
) ) )
43fveq2d 5531 . . . . . 6  |-  ( f  =  F  ->  ( normh `  ( ( f `
 y )  -h  ( f `  z
) ) )  =  ( normh `  ( ( F `  y )  -h  ( F `  z
) ) ) )
54breq1d 4035 . . . . 5  |-  ( f  =  F  ->  (
( normh `  ( (
f `  y )  -h  ( f `  z
) ) )  < 
x  <->  ( normh `  (
( F `  y
)  -h  ( F `
 z ) ) )  <  x ) )
65rexralbidv 2589 . . . 4  |-  ( f  =  F  ->  ( E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  y )  -h  (
f `  z )
) )  <  x  <->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
76ralbidv 2565 . . 3  |-  ( f  =  F  ->  ( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( (
f `  y )  -h  ( f `  z
) ) )  < 
x  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
8 df-hcau 21555 . . 3  |-  Cauchy  =  {
f  e.  ( ~H 
^m  NN )  | 
A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  y )  -h  (
f `  z )
) )  <  x }
97, 8elrab2 2927 . 2  |-  ( F  e.  Cauchy 
<->  ( F  e.  ( ~H  ^m  NN )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
10 ax-hilex 21581 . . . 4  |-  ~H  e.  _V
11 nnex 9754 . . . 4  |-  NN  e.  _V
1210, 11elmap 6798 . . 3  |-  ( F  e.  ( ~H  ^m  NN )  <->  F : NN --> ~H )
1312anbi1i 676 . 2  |-  ( ( F  e.  ( ~H 
^m  NN )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  y )  -h  ( F `  z
) ) )  < 
x )  <->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  y )  -h  ( F `  z
) ) )  < 
x ) )
149, 13bitri 240 1  |-  ( F  e.  Cauchy 
<->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   E.wrex 2546   class class class wbr 4025   -->wf 5253   ` cfv 5257  (class class class)co 5860    ^m cmap 6774    < clt 8869   NNcn 9748   ZZ>=cuz 10232   RR+crp 10356   ~Hchil 21501   normhcno 21505    -h cmv 21507   Cauchyccau 21508
This theorem is referenced by:  hcauseq  21766  hcaucvg  21767  seq1hcau  21768  chscllem2  22219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-i2m1 8807  ax-1ne0 8808  ax-rrecex 8811  ax-cnre 8812  ax-hilex 21581
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-recs 6390  df-rdg 6425  df-map 6776  df-nn 9749  df-hcau 21555
  Copyright terms: Public domain W3C validator