Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem10 Unicode version

Theorem hdmap14lem10 32070
Description: Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 3-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem8.h  |-  H  =  ( LHyp `  K
)
hdmap14lem8.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap14lem8.v  |-  V  =  ( Base `  U
)
hdmap14lem8.q  |-  .+  =  ( +g  `  U )
hdmap14lem8.t  |-  .x.  =  ( .s `  U )
hdmap14lem8.o  |-  .0.  =  ( 0g `  U )
hdmap14lem8.n  |-  N  =  ( LSpan `  U )
hdmap14lem8.r  |-  R  =  (Scalar `  U )
hdmap14lem8.b  |-  B  =  ( Base `  R
)
hdmap14lem8.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap14lem8.d  |-  .+b  =  ( +g  `  C )
hdmap14lem8.e  |-  .xb  =  ( .s `  C )
hdmap14lem8.p  |-  P  =  (Scalar `  C )
hdmap14lem8.a  |-  A  =  ( Base `  P
)
hdmap14lem8.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmap14lem8.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap14lem8.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap14lem8.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap14lem8.f  |-  ( ph  ->  F  e.  B )
hdmap14lem8.g  |-  ( ph  ->  G  e.  A )
hdmap14lem8.i  |-  ( ph  ->  I  e.  A )
hdmap14lem8.xx  |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )
hdmap14lem8.yy  |-  ( ph  ->  ( S `  ( F  .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )
hdmap14lem8.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
Assertion
Ref Expression
hdmap14lem10  |-  ( ph  ->  G  =  I )

Proof of Theorem hdmap14lem10
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 hdmap14lem8.h . . 3  |-  H  =  ( LHyp `  K
)
2 hdmap14lem8.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap14lem8.v . . 3  |-  V  =  ( Base `  U
)
4 hdmap14lem8.t . . 3  |-  .x.  =  ( .s `  U )
5 hdmap14lem8.r . . 3  |-  R  =  (Scalar `  U )
6 hdmap14lem8.b . . 3  |-  B  =  ( Base `  R
)
7 hdmap14lem8.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
8 hdmap14lem8.e . . 3  |-  .xb  =  ( .s `  C )
9 eqid 2283 . . 3  |-  ( LSpan `  C )  =  (
LSpan `  C )
10 hdmap14lem8.p . . 3  |-  P  =  (Scalar `  C )
11 hdmap14lem8.a . . 3  |-  A  =  ( Base `  P
)
12 hdmap14lem8.s . . 3  |-  S  =  ( (HDMap `  K
) `  W )
13 hdmap14lem8.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
141, 2, 13dvhlmod 31300 . . . 4  |-  ( ph  ->  U  e.  LMod )
15 hdmap14lem8.x . . . . 5  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
16 eldifi 3298 . . . . 5  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  e.  V )
1715, 16syl 15 . . . 4  |-  ( ph  ->  X  e.  V )
18 hdmap14lem8.y . . . . 5  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
19 eldifi 3298 . . . . 5  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  Y  e.  V )
2018, 19syl 15 . . . 4  |-  ( ph  ->  Y  e.  V )
21 hdmap14lem8.q . . . . 5  |-  .+  =  ( +g  `  U )
223, 21lmodvacl 15641 . . . 4  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
2314, 17, 20, 22syl3anc 1182 . . 3  |-  ( ph  ->  ( X  .+  Y
)  e.  V )
24 hdmap14lem8.f . . 3  |-  ( ph  ->  F  e.  B )
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 23, 24hdmap14lem2a 32060 . 2  |-  ( ph  ->  E. g  e.  A  ( S `  ( F 
.x.  ( X  .+  Y ) ) )  =  ( g  .xb  ( S `  ( X 
.+  Y ) ) ) )
26 hdmap14lem8.o . . . 4  |-  .0.  =  ( 0g `  U )
27 hdmap14lem8.n . . . 4  |-  N  =  ( LSpan `  U )
28 hdmap14lem8.d . . . 4  |-  .+b  =  ( +g  `  C )
29133ad2ant1 976 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
30153ad2ant1 976 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  ->  X  e.  ( V  \  {  .0.  } ) )
31183ad2ant1 976 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  ->  Y  e.  ( V  \  {  .0.  } ) )
32243ad2ant1 976 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  ->  F  e.  B )
33 hdmap14lem8.g . . . . 5  |-  ( ph  ->  G  e.  A )
34333ad2ant1 976 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  ->  G  e.  A )
35 hdmap14lem8.i . . . . 5  |-  ( ph  ->  I  e.  A )
36353ad2ant1 976 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  ->  I  e.  A )
37 hdmap14lem8.xx . . . . 5  |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )
38373ad2ant1 976 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  -> 
( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )
39 hdmap14lem8.yy . . . . 5  |-  ( ph  ->  ( S `  ( F  .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )
40393ad2ant1 976 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  -> 
( S `  ( F  .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )
41 hdmap14lem8.ne . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
42413ad2ant1 976 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  -> 
( N `  { X } )  =/=  ( N `  { Y } ) )
43 simp2 956 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  -> 
g  e.  A )
44 simp3 957 . . . 4  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  -> 
( S `  ( F  .x.  ( X  .+  Y ) ) )  =  ( g  .xb  ( S `  ( X 
.+  Y ) ) ) )
451, 2, 3, 21, 4, 26, 27, 5, 6, 7, 28, 8, 10, 11, 12, 29, 30, 31, 32, 34, 36, 38, 40, 42, 43, 44hdmap14lem9 32069 . . 3  |-  ( (
ph  /\  g  e.  A  /\  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) ) )  ->  G  =  I )
4645rexlimdv3a 2669 . 2  |-  ( ph  ->  ( E. g  e.  A  ( S `  ( F  .x.  ( X 
.+  Y ) ) )  =  ( g 
.xb  ( S `  ( X  .+  Y ) ) )  ->  G  =  I ) )
4725, 46mpd 14 1  |-  ( ph  ->  G  =  I )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    \ cdif 3149   {csn 3640   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208  Scalarcsca 13211   .scvsca 13212   0gc0g 13400   LModclmod 15627   LSpanclspn 15728   HLchlt 29540   LHypclh 30173   DVecHcdvh 31268  LCDualclcd 31776  HDMapchdma 31983
This theorem is referenced by:  hdmap14lem11  32071
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-undef 6298  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-0g 13404  df-mre 13488  df-mrc 13489  df-acs 13491  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-cntz 14793  df-oppg 14819  df-lsm 14947  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-drng 15514  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lvec 15856  df-lsatoms 29166  df-lshyp 29167  df-lcv 29209  df-lfl 29248  df-lkr 29276  df-ldual 29314  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tgrp 30932  df-tendo 30944  df-edring 30946  df-dveca 31192  df-disoa 31219  df-dvech 31269  df-dib 31329  df-dic 31363  df-dih 31419  df-doch 31538  df-djh 31585  df-lcdual 31777  df-mapd 31815  df-hvmap 31947  df-hdmap1 31984  df-hdmap 31985
  Copyright terms: Public domain W3C validator