Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem11 Unicode version

Theorem hdmap14lem11 31321
Description: Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 3-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem8.h  |-  H  =  ( LHyp `  K
)
hdmap14lem8.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap14lem8.v  |-  V  =  ( Base `  U
)
hdmap14lem8.q  |-  .+  =  ( +g  `  U )
hdmap14lem8.t  |-  .x.  =  ( .s `  U )
hdmap14lem8.o  |-  .0.  =  ( 0g `  U )
hdmap14lem8.n  |-  N  =  ( LSpan `  U )
hdmap14lem8.r  |-  R  =  (Scalar `  U )
hdmap14lem8.b  |-  B  =  ( Base `  R
)
hdmap14lem8.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap14lem8.d  |-  .+b  =  ( +g  `  C )
hdmap14lem8.e  |-  .xb  =  ( .s `  C )
hdmap14lem8.p  |-  P  =  (Scalar `  C )
hdmap14lem8.a  |-  A  =  ( Base `  P
)
hdmap14lem8.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmap14lem8.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap14lem8.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap14lem8.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap14lem8.f  |-  ( ph  ->  F  e.  B )
hdmap14lem8.g  |-  ( ph  ->  G  e.  A )
hdmap14lem8.i  |-  ( ph  ->  I  e.  A )
hdmap14lem8.xx  |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )
hdmap14lem8.yy  |-  ( ph  ->  ( S `  ( F  .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )
Assertion
Ref Expression
hdmap14lem11  |-  ( ph  ->  G  =  I )

Proof of Theorem hdmap14lem11
StepHypRef Expression
1 hdmap14lem8.h . . 3  |-  H  =  ( LHyp `  K
)
2 hdmap14lem8.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap14lem8.v . . 3  |-  V  =  ( Base `  U
)
4 hdmap14lem8.n . . 3  |-  N  =  ( LSpan `  U )
5 hdmap14lem8.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
6 hdmap14lem8.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
7 eldifi 3273 . . . 4  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  e.  V )
86, 7syl 17 . . 3  |-  ( ph  ->  X  e.  V )
9 hdmap14lem8.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
10 eldifi 3273 . . . 4  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  Y  e.  V )
119, 10syl 17 . . 3  |-  ( ph  ->  Y  e.  V )
121, 2, 3, 4, 5, 8, 11dvh3dim 30886 . 2  |-  ( ph  ->  E. z  e.  V  -.  z  e.  ( N `  { X ,  Y } ) )
13 hdmap14lem8.t . . . . 5  |-  .x.  =  ( .s `  U )
14 hdmap14lem8.r . . . . 5  |-  R  =  (Scalar `  U )
15 hdmap14lem8.b . . . . 5  |-  B  =  ( Base `  R
)
16 hdmap14lem8.c . . . . 5  |-  C  =  ( (LCDual `  K
) `  W )
17 hdmap14lem8.e . . . . 5  |-  .xb  =  ( .s `  C )
18 eqid 2258 . . . . 5  |-  ( LSpan `  C )  =  (
LSpan `  C )
19 hdmap14lem8.p . . . . 5  |-  P  =  (Scalar `  C )
20 hdmap14lem8.a . . . . 5  |-  A  =  ( Base `  P
)
21 hdmap14lem8.s . . . . 5  |-  S  =  ( (HDMap `  K
) `  W )
2253ad2ant1 981 . . . . 5  |-  ( (
ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
23 simp2 961 . . . . 5  |-  ( (
ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  ->  z  e.  V )
24 hdmap14lem8.f . . . . . 6  |-  ( ph  ->  F  e.  B )
25243ad2ant1 981 . . . . 5  |-  ( (
ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  ->  F  e.  B )
261, 2, 3, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25hdmap14lem2a 31310 . . . 4  |-  ( (
ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  ->  E. g  e.  A  ( S `  ( F  .x.  z
) )  =  ( g  .xb  ( S `  z ) ) )
27 hdmap14lem8.q . . . . . . 7  |-  .+  =  ( +g  `  U )
28 hdmap14lem8.o . . . . . . 7  |-  .0.  =  ( 0g `  U )
29 hdmap14lem8.d . . . . . . 7  |-  .+b  =  ( +g  `  C )
30 simp11 990 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  ph )
3130, 5syl 17 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
32 eqid 2258 . . . . . . . 8  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
331, 2, 5dvhlmod 30550 . . . . . . . . 9  |-  ( ph  ->  U  e.  LMod )
3430, 33syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  U  e.  LMod )
353, 32, 4, 33, 8, 11lspprcl 15698 . . . . . . . . 9  |-  ( ph  ->  ( N `  { X ,  Y }
)  e.  ( LSubSp `  U ) )
3630, 35syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  ( N `  { X ,  Y } )  e.  ( LSubSp `  U )
)
37 simp12 991 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  z  e.  V )
38 simp13 992 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  -.  z  e.  ( N `  { X ,  Y } ) )
393, 28, 32, 34, 36, 37, 38lssneln0 15672 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  z  e.  ( V  \  {  .0.  } ) )
4030, 6syl 17 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  X  e.  ( V  \  {  .0.  } ) )
4130, 24syl 17 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  F  e.  B )
42 simp2 961 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  g  e.  A )
43 hdmap14lem8.g . . . . . . . 8  |-  ( ph  ->  G  e.  A )
4430, 43syl 17 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  G  e.  A )
45 simp3 962 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )
46 hdmap14lem8.xx . . . . . . . 8  |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X ) ) )
4730, 46syl 17 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  ( S `  ( F  .x.  X ) )  =  ( G  .xb  ( S `  X )
) )
481, 2, 5dvhlvec 30549 . . . . . . . . . 10  |-  ( ph  ->  U  e.  LVec )
4930, 48syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  U  e.  LVec )
5030, 8syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  X  e.  V )
5130, 11syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  Y  e.  V )
523, 4, 49, 37, 50, 51, 38lspindpi 15848 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { Y } ) ) )
5352simpld 447 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  ( N `  { z } )  =/=  ( N `  { X } ) )
541, 2, 3, 27, 13, 28, 4, 14, 15, 16, 29, 17, 19, 20, 21, 31, 39, 40, 41, 42, 44, 45, 47, 53hdmap14lem10 31320 . . . . . 6  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  g  =  G )
5530, 9syl 17 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  Y  e.  ( V  \  {  .0.  } ) )
56 hdmap14lem8.i . . . . . . . 8  |-  ( ph  ->  I  e.  A )
5730, 56syl 17 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  I  e.  A )
58 hdmap14lem8.yy . . . . . . . 8  |-  ( ph  ->  ( S `  ( F  .x.  Y ) )  =  ( I  .xb  ( S `  Y ) ) )
5930, 58syl 17 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  ( S `  ( F  .x.  Y ) )  =  ( I  .xb  ( S `  Y )
) )
6052simprd 451 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  ( N `  { z } )  =/=  ( N `  { Y } ) )
611, 2, 3, 27, 13, 28, 4, 14, 15, 16, 29, 17, 19, 20, 21, 31, 39, 55, 41, 42, 57, 45, 59, 60hdmap14lem10 31320 . . . . . 6  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  g  =  I )
6254, 61eqtr3d 2292 . . . . 5  |-  ( ( ( ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  /\  g  e.  A  /\  ( S `  ( F  .x.  z ) )  =  ( g  .xb  ( S `  z )
) )  ->  G  =  I )
6362rexlimdv3a 2644 . . . 4  |-  ( (
ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  ->  ( E. g  e.  A  ( S `  ( F 
.x.  z ) )  =  ( g  .xb  ( S `  z ) )  ->  G  =  I ) )
6426, 63mpd 16 . . 3  |-  ( (
ph  /\  z  e.  V  /\  -.  z  e.  ( N `  { X ,  Y }
) )  ->  G  =  I )
6564rexlimdv3a 2644 . 2  |-  ( ph  ->  ( E. z  e.  V  -.  z  e.  ( N `  { X ,  Y }
)  ->  G  =  I ) )
6612, 65mpd 16 1  |-  ( ph  ->  G  =  I )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   E.wrex 2519    \ cdif 3124   {csn 3614   {cpr 3615   ` cfv 4673  (class class class)co 5792   Basecbs 13111   +g cplusg 13171  Scalarcsca 13174   .scvsca 13175   0gc0g 13363   LModclmod 15590   LSubSpclss 15652   LSpanclspn 15691   LVecclvec 15818   HLchlt 28790   LHypclh 29423   DVecHcdvh 30518  LCDualclcd 31026  HDMapchdma 31233
This theorem is referenced by:  hdmap14lem12  31322
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-ot 3624  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-tpos 6168  df-iota 6225  df-undef 6264  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-n0 9934  df-z 9993  df-uz 10199  df-fz 10750  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-sca 13187  df-vsca 13188  df-0g 13367  df-mre 13451  df-mrc 13452  df-acs 13454  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-mnd 14330  df-submnd 14379  df-grp 14452  df-minusg 14453  df-sbg 14454  df-subg 14581  df-cntz 14756  df-oppg 14782  df-lsm 14910  df-cmn 15054  df-abl 15055  df-mgp 15289  df-ring 15303  df-ur 15305  df-oppr 15368  df-dvdsr 15386  df-unit 15387  df-invr 15417  df-dvr 15428  df-drng 15477  df-lmod 15592  df-lss 15653  df-lsp 15692  df-lvec 15819  df-lsatoms 28416  df-lshyp 28417  df-lcv 28459  df-lfl 28498  df-lkr 28526  df-ldual 28564  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-llines 28937  df-lplanes 28938  df-lvols 28939  df-lines 28940  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427  df-laut 29428  df-ldil 29543  df-ltrn 29544  df-trl 29598  df-tgrp 30182  df-tendo 30194  df-edring 30196  df-dveca 30442  df-disoa 30469  df-dvech 30519  df-dib 30579  df-dic 30613  df-dih 30669  df-doch 30788  df-djh 30835  df-lcdual 31027  df-mapd 31065  df-hvmap 31197  df-hdmap1 31234  df-hdmap 31235
  Copyright terms: Public domain W3C validator