Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eq Unicode version

Theorem hdmap1eq 31810
Description: The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 16-May-2015.)
Hypotheses
Ref Expression
hdmap1val2.h  |-  H  =  ( LHyp `  K
)
hdmap1val2.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1val2.v  |-  V  =  ( Base `  U
)
hdmap1val2.s  |-  .-  =  ( -g `  U )
hdmap1val2.o  |-  .0.  =  ( 0g `  U )
hdmap1val2.n  |-  N  =  ( LSpan `  U )
hdmap1val2.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1val2.d  |-  D  =  ( Base `  C
)
hdmap1val2.r  |-  R  =  ( -g `  C
)
hdmap1val2.l  |-  L  =  ( LSpan `  C )
hdmap1val2.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1val2.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1val2.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1eq.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1eq.f  |-  ( ph  ->  F  e.  D )
hdmap1eq.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1eq.g  |-  ( ph  ->  G  e.  D )
hdmap1eq.e  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
hdmap1eq.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
Assertion
Ref Expression
hdmap1eq  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )

Proof of Theorem hdmap1eq
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 hdmap1val2.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmap1val2.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap1val2.v . . . 4  |-  V  =  ( Base `  U
)
4 hdmap1val2.s . . . 4  |-  .-  =  ( -g `  U )
5 hdmap1val2.o . . . 4  |-  .0.  =  ( 0g `  U )
6 hdmap1val2.n . . . 4  |-  N  =  ( LSpan `  U )
7 hdmap1val2.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
8 hdmap1val2.d . . . 4  |-  D  =  ( Base `  C
)
9 hdmap1val2.r . . . 4  |-  R  =  ( -g `  C
)
10 hdmap1val2.l . . . 4  |-  L  =  ( LSpan `  C )
11 hdmap1val2.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
12 hdmap1val2.i . . . 4  |-  I  =  ( (HDMap1 `  K
) `  W )
13 hdmap1val2.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
14 hdmap1eq.x . . . . 5  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
15 eldifi 3332 . . . . 5  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  e.  V )
1614, 15syl 15 . . . 4  |-  ( ph  ->  X  e.  V )
17 hdmap1eq.f . . . 4  |-  ( ph  ->  F  e.  D )
18 hdmap1eq.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18hdmap1val2 31809 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( L `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R h ) } ) ) ) )
2019eqeq1d 2324 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( iota_ h  e.  D
( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) ) )  =  G ) )
21 hdmap1eq.e . . . 4  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
22 hdmap1eq.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
231, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 18, 17, 21, 22mapdpg 31714 . . 3  |-  ( ph  ->  E! h  e.  D  ( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) ) )
24 nfv 1610 . . . 4  |-  F/ h ph
25 nfcvd 2453 . . . 4  |-  ( ph  -> 
F/_ h G )
26 nfvd 1611 . . . 4  |-  ( ph  ->  F/ h ( ( M `  ( N `
 { Y }
) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) )
27 hdmap1eq.g . . . 4  |-  ( ph  ->  G  e.  D )
28 sneq 3685 . . . . . . . 8  |-  ( h  =  G  ->  { h }  =  { G } )
2928fveq2d 5567 . . . . . . 7  |-  ( h  =  G  ->  ( L `  { h } )  =  ( L `  { G } ) )
3029eqeq2d 2327 . . . . . 6  |-  ( h  =  G  ->  (
( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  <->  ( M `  ( N `  { Y } ) )  =  ( L `  { G } ) ) )
31 oveq2 5908 . . . . . . . . 9  |-  ( h  =  G  ->  ( F R h )  =  ( F R G ) )
3231sneqd 3687 . . . . . . . 8  |-  ( h  =  G  ->  { ( F R h ) }  =  { ( F R G ) } )
3332fveq2d 5567 . . . . . . 7  |-  ( h  =  G  ->  ( L `  { ( F R h ) } )  =  ( L `
 { ( F R G ) } ) )
3433eqeq2d 2327 . . . . . 6  |-  ( h  =  G  ->  (
( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `  { ( F R h ) } )  <->  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R G ) } ) ) )
3530, 34anbi12d 691 . . . . 5  |-  ( h  =  G  ->  (
( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) )  <->  ( ( M `  ( N `  { Y } ) )  =  ( L `
 { G }
)  /\  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R G ) } ) ) ) )
3635adantl 452 . . . 4  |-  ( (
ph  /\  h  =  G )  ->  (
( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) )  <->  ( ( M `  ( N `  { Y } ) )  =  ( L `
 { G }
)  /\  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R G ) } ) ) ) )
3724, 25, 26, 27, 36riota2df 6367 . . 3  |-  ( (
ph  /\  E! h  e.  D  ( ( M `  ( N `  { Y } ) )  =  ( L `
 { h }
)  /\  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R h ) } ) ) )  ->  (
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) )  <->  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( L `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R h ) } ) ) )  =  G ) )
3823, 37mpdan 649 . 2  |-  ( ph  ->  ( ( ( M `
 ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R G ) } ) )  <->  ( iota_ h  e.  D ( ( M `  ( N `
 { Y }
) )  =  ( L `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R h ) } ) ) )  =  G ) )
3920, 38bitr4d 247 1  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633    e. wcel 1701    =/= wne 2479   E!wreu 2579    \ cdif 3183   {csn 3674   <.cotp 3678   ` cfv 5292  (class class class)co 5900   iota_crio 6339   Basecbs 13195   0gc0g 13449   -gcsg 14414   LSpanclspn 15777   HLchlt 29358   LHypclh 29991   DVecHcdvh 31086  LCDualclcd 31594  mapdcmpd 31632  HDMap1chdma1 31800
This theorem is referenced by:  hdmap1l6lem1  31816  hdmap1l6lem2  31817  hdmap1l6a  31818  hdmap1neglem1N  31836  hdmapval3lemN  31848  hdmap10lem  31850  hdmap11lem1  31852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-ot 3684  df-uni 3865  df-int 3900  df-iun 3944  df-iin 3945  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-of 6120  df-1st 6164  df-2nd 6165  df-tpos 6276  df-undef 6340  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-er 6702  df-map 6817  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-3 9850  df-4 9851  df-5 9852  df-6 9853  df-n0 10013  df-z 10072  df-uz 10278  df-fz 10830  df-struct 13197  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-ress 13202  df-plusg 13268  df-mulr 13269  df-sca 13271  df-vsca 13272  df-0g 13453  df-mre 13537  df-mrc 13538  df-acs 13540  df-poset 14129  df-plt 14141  df-lub 14157  df-glb 14158  df-join 14159  df-meet 14160  df-p0 14194  df-p1 14195  df-lat 14201  df-clat 14263  df-mnd 14416  df-submnd 14465  df-grp 14538  df-minusg 14539  df-sbg 14540  df-subg 14667  df-cntz 14842  df-oppg 14868  df-lsm 14996  df-cmn 15140  df-abl 15141  df-mgp 15375  df-rng 15389  df-ur 15391  df-oppr 15454  df-dvdsr 15472  df-unit 15473  df-invr 15503  df-dvr 15514  df-drng 15563  df-lmod 15678  df-lss 15739  df-lsp 15778  df-lvec 15905  df-lsatoms 28984  df-lshyp 28985  df-lcv 29027  df-lfl 29066  df-lkr 29094  df-ldual 29132  df-oposet 29184  df-ol 29186  df-oml 29187  df-covers 29274  df-ats 29275  df-atl 29306  df-cvlat 29330  df-hlat 29359  df-llines 29505  df-lplanes 29506  df-lvols 29507  df-lines 29508  df-psubsp 29510  df-pmap 29511  df-padd 29803  df-lhyp 29995  df-laut 29996  df-ldil 30111  df-ltrn 30112  df-trl 30166  df-tgrp 30750  df-tendo 30762  df-edring 30764  df-dveca 31010  df-disoa 31037  df-dvech 31087  df-dib 31147  df-dic 31181  df-dih 31237  df-doch 31356  df-djh 31403  df-lcdual 31595  df-mapd 31633  df-hdmap1 31802
  Copyright terms: Public domain W3C validator