Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6g Unicode version

Theorem hdmap1l6g 32454
Description: Lemmma for hdmap1l6 32459. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
hdmap1l6.h  |-  H  =  ( LHyp `  K
)
hdmap1l6.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1l6.v  |-  V  =  ( Base `  U
)
hdmap1l6.p  |-  .+  =  ( +g  `  U )
hdmap1l6.s  |-  .-  =  ( -g `  U )
hdmap1l6c.o  |-  .0.  =  ( 0g `  U )
hdmap1l6.n  |-  N  =  ( LSpan `  U )
hdmap1l6.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1l6.d  |-  D  =  ( Base `  C
)
hdmap1l6.a  |-  .+b  =  ( +g  `  C )
hdmap1l6.r  |-  R  =  ( -g `  C
)
hdmap1l6.q  |-  Q  =  ( 0g `  C
)
hdmap1l6.l  |-  L  =  ( LSpan `  C )
hdmap1l6.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1l6.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1l6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1l6.f  |-  ( ph  ->  F  e.  D )
hdmap1l6cl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1l6.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1l6d.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
hdmap1l6d.yz  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
hdmap1l6d.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1l6d.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
hdmap1l6d.w  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
hdmap1l6d.wn  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
Assertion
Ref Expression
hdmap1l6g  |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )

Proof of Theorem hdmap1l6g
StepHypRef Expression
1 hdmap1l6.h . . 3  |-  H  =  ( LHyp `  K
)
2 hdmap1l6.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap1l6.v . . 3  |-  V  =  ( Base `  U
)
4 hdmap1l6.p . . 3  |-  .+  =  ( +g  `  U )
5 hdmap1l6.s . . 3  |-  .-  =  ( -g `  U )
6 hdmap1l6c.o . . 3  |-  .0.  =  ( 0g `  U )
7 hdmap1l6.n . . 3  |-  N  =  ( LSpan `  U )
8 hdmap1l6.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
9 hdmap1l6.d . . 3  |-  D  =  ( Base `  C
)
10 hdmap1l6.a . . 3  |-  .+b  =  ( +g  `  C )
11 hdmap1l6.r . . 3  |-  R  =  ( -g `  C
)
12 hdmap1l6.q . . 3  |-  Q  =  ( 0g `  C
)
13 hdmap1l6.l . . 3  |-  L  =  ( LSpan `  C )
14 hdmap1l6.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
15 hdmap1l6.i . . 3  |-  I  =  ( (HDMap1 `  K
) `  W )
16 hdmap1l6.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
17 hdmap1l6.f . . 3  |-  ( ph  ->  F  e.  D )
18 hdmap1l6cl.x . . 3  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
19 hdmap1l6.mn . . 3  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
20 hdmap1l6d.xn . . 3  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
21 hdmap1l6d.yz . . 3  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
22 hdmap1l6d.y . . 3  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
23 hdmap1l6d.z . . 3  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
24 hdmap1l6d.w . . 3  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
25 hdmap1l6d.wn . . 3  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6d 32451 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  ( Y 
.+  Z ) )
>. )  =  (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )
) )
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6e 32452 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  ( ( w  .+  Y
)  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  ( w  .+  Y ) >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
281, 2, 16dvhlmod 31747 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
2924eldifad 3324 . . . . . 6  |-  ( ph  ->  w  e.  V )
3022eldifad 3324 . . . . . 6  |-  ( ph  ->  Y  e.  V )
3123eldifad 3324 . . . . . 6  |-  ( ph  ->  Z  e.  V )
323, 4lmodass 15953 . . . . . 6  |-  ( ( U  e.  LMod  /\  (
w  e.  V  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( (
w  .+  Y )  .+  Z )  =  ( w  .+  ( Y 
.+  Z ) ) )
3328, 29, 30, 31, 32syl13anc 1186 . . . . 5  |-  ( ph  ->  ( ( w  .+  Y )  .+  Z
)  =  ( w 
.+  ( Y  .+  Z ) ) )
3433oteq3d 3990 . . . 4  |-  ( ph  -> 
<. X ,  F , 
( ( w  .+  Y )  .+  Z
) >.  =  <. X ,  F ,  ( w  .+  ( Y  .+  Z
) ) >. )
3534fveq2d 5723 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  ( ( w  .+  Y
)  .+  Z ) >. )  =  ( I `
 <. X ,  F ,  ( w  .+  ( Y  .+  Z ) ) >. ) )
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6f 32453 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  Y )
>. )  =  (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) ) )
3736oveq1d 6087 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  F , 
( w  .+  Y
) >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  =  ( ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
3827, 35, 373eqtr3d 2475 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  ( Y 
.+  Z ) )
>. )  =  (
( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
3926, 38eqtr3d 2469 1  |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    \ cdif 3309   {csn 3806   {cpr 3807   <.cotp 3810   ` cfv 5445  (class class class)co 6072   Basecbs 13457   +g cplusg 13517   0gc0g 13711   -gcsg 14676   LModclmod 15938   LSpanclspn 16035   HLchlt 29987   LHypclh 30620   DVecHcdvh 31715  LCDualclcd 32223  mapdcmpd 32261  HDMap1chdma1 32429
This theorem is referenced by:  hdmap1l6h  32455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-ot 3816  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-tpos 6470  df-undef 6534  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-map 7011  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-n0 10211  df-z 10272  df-uz 10478  df-fz 11033  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-sca 13533  df-vsca 13534  df-0g 13715  df-mre 13799  df-mrc 13800  df-acs 13802  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-mnd 14678  df-submnd 14727  df-grp 14800  df-minusg 14801  df-sbg 14802  df-subg 14929  df-cntz 15104  df-oppg 15130  df-lsm 15258  df-cmn 15402  df-abl 15403  df-mgp 15637  df-rng 15651  df-ur 15653  df-oppr 15716  df-dvdsr 15734  df-unit 15735  df-invr 15765  df-dvr 15776  df-drng 15825  df-lmod 15940  df-lss 15997  df-lsp 16036  df-lvec 16163  df-lsatoms 29613  df-lshyp 29614  df-lcv 29656  df-lfl 29695  df-lkr 29723  df-ldual 29761  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795  df-tgrp 31379  df-tendo 31391  df-edring 31393  df-dveca 31639  df-disoa 31666  df-dvech 31716  df-dib 31776  df-dic 31810  df-dih 31866  df-doch 31985  df-djh 32032  df-lcdual 32224  df-mapd 32262  df-hdmap1 32431
  Copyright terms: Public domain W3C validator