Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem1 Unicode version

Theorem hdmap1l6lem1 31128
Description: Lemma for hdmap1l6 31142. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h  |-  H  =  ( LHyp `  K
)
hdmap1l6.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1l6.v  |-  V  =  ( Base `  U
)
hdmap1l6.p  |-  .+  =  ( +g  `  U )
hdmap1l6.s  |-  .-  =  ( -g `  U )
hdmap1l6c.o  |-  .0.  =  ( 0g `  U )
hdmap1l6.n  |-  N  =  ( LSpan `  U )
hdmap1l6.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1l6.d  |-  D  =  ( Base `  C
)
hdmap1l6.a  |-  .+b  =  ( +g  `  C )
hdmap1l6.r  |-  R  =  ( -g `  C
)
hdmap1l6.q  |-  Q  =  ( 0g `  C
)
hdmap1l6.l  |-  L  =  ( LSpan `  C )
hdmap1l6.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1l6.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1l6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1l6.f  |-  ( ph  ->  F  e.  D )
hdmap1l6cl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1l6.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1l6e.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
hdmap1l6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
hdmap1l6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
hdmap1l6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
hdmap1l6lem1  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( G 
.+b  E ) ) } ) )

Proof of Theorem hdmap1l6lem1
StepHypRef Expression
1 hdmap1l6.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmap1l6.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 hdmap1l6.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2256 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
5 hdmap1l6.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
61, 3, 5dvhlmod 30430 . . . . 5  |-  ( ph  ->  U  e.  LMod )
7 hdmap1l6cl.x . . . . . . . 8  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
8 eldifi 3240 . . . . . . . 8  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  e.  V )
97, 8syl 17 . . . . . . 7  |-  ( ph  ->  X  e.  V )
10 hdmap1l6e.y . . . . . . . 8  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
11 eldifi 3240 . . . . . . . 8  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  Y  e.  V )
1210, 11syl 17 . . . . . . 7  |-  ( ph  ->  Y  e.  V )
13 hdmap1l6.v . . . . . . . 8  |-  V  =  ( Base `  U
)
14 hdmap1l6.s . . . . . . . 8  |-  .-  =  ( -g `  U )
1513, 14lmodvsubcl 15597 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
166, 9, 12, 15syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( X  .-  Y
)  e.  V )
17 hdmap1l6.n . . . . . . 7  |-  N  =  ( LSpan `  U )
1813, 4, 17lspsncl 15661 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Y )  e.  V )  ->  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U ) )
196, 16, 18syl2anc 645 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Y
) } )  e.  ( LSubSp `  U )
)
20 hdmap1l6e.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
21 eldifi 3240 . . . . . . 7  |-  ( Z  e.  ( V  \  {  .0.  } )  ->  Z  e.  V )
2220, 21syl 17 . . . . . 6  |-  ( ph  ->  Z  e.  V )
2313, 4, 17lspsncl 15661 . . . . . 6  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
246, 22, 23syl2anc 645 . . . . 5  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
25 eqid 2256 . . . . . 6  |-  ( LSSum `  U )  =  (
LSSum `  U )
264, 25lsmcl 15763 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U )  /\  ( N `  { Z } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  Y ) } ) ( LSSum `  U
) ( N `  { Z } ) )  e.  ( LSubSp `  U
) )
276, 19, 24, 26syl3anc 1187 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  e.  ( LSubSp `  U )
)
2813, 14lmodvsubcl 15597 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Z  e.  V )  ->  ( X  .-  Z )  e.  V )
296, 9, 22, 28syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( X  .-  Z
)  e.  V )
3013, 4, 17lspsncl 15661 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Z )  e.  V )  ->  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U ) )
316, 29, 30syl2anc 645 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Z
) } )  e.  ( LSubSp `  U )
)
3213, 4, 17lspsncl 15661 . . . . . 6  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
336, 12, 32syl2anc 645 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
344, 25lsmcl 15763 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U )  /\  ( N `  { Y } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  Z ) } ) ( LSSum `  U
) ( N `  { Y } ) )  e.  ( LSubSp `  U
) )
356, 31, 33, 34syl3anc 1187 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) )  e.  ( LSubSp `  U )
)
361, 2, 3, 4, 5, 27, 35mapdin 30982 . . 3  |-  ( ph  ->  ( M `  (
( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  i^i  ( M `  (
( N `  {
( X  .-  Z
) } ) (
LSSum `  U ) ( N `  { Y } ) ) ) ) )
37 hdmap1l6.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
38 eqid 2256 . . . . . 6  |-  ( LSSum `  C )  =  (
LSSum `  C )
391, 2, 3, 4, 25, 37, 38, 5, 19, 24mapdlsm 30984 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { Z } ) ) )  =  ( ( M `
 ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Z } ) ) ) )
401, 2, 3, 4, 25, 37, 38, 5, 31, 33mapdlsm 30984 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Z
) } ) (
LSSum `  U ) ( N `  { Y } ) ) )  =  ( ( M `
 ( N `  { ( X  .-  Z ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Y } ) ) ) )
4139, 40ineq12d 3313 . . . 4  |-  ( ph  ->  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( M `  ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C ) ( M `
 ( N `  { Z } ) ) )  i^i  ( ( M `  ( N `
 { ( X 
.-  Z ) } ) ) ( LSSum `  C ) ( M `
 ( N `  { Y } ) ) ) ) )
42 hdmap1l6.fg . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
43 hdmap1l6c.o . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
44 hdmap1l6.d . . . . . . . . 9  |-  D  =  ( Base `  C
)
45 hdmap1l6.r . . . . . . . . 9  |-  R  =  ( -g `  C
)
46 hdmap1l6.l . . . . . . . . 9  |-  L  =  ( LSpan `  C )
47 hdmap1l6.i . . . . . . . . 9  |-  I  =  ( (HDMap1 `  K
) `  W )
48 hdmap1l6.f . . . . . . . . 9  |-  ( ph  ->  F  e.  D )
49 hdmap1l6.mn . . . . . . . . . . 11  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
501, 3, 5dvhlvec 30429 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LVec )
51 hdmap1l6.yz . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
52 hdmap1l6e.xn . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
5313, 43, 17, 50, 12, 20, 9, 51, 52lspindp2 15815 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
5453simpld 447 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
551, 3, 13, 43, 17, 37, 44, 46, 2, 47, 5, 48, 49, 54, 7, 12hdmap1cl 31125 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
5642, 55eqeltrrd 2331 . . . . . . . . 9  |-  ( ph  ->  G  e.  D )
571, 3, 13, 14, 43, 17, 37, 44, 45, 46, 2, 47, 5, 7, 48, 10, 56, 54, 49hdmap1eq 31122 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )
5842, 57mpbid 203 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) )
5958simprd 451 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `  { ( F R G ) } ) )
60 hdmap1l6.fe . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
6113, 43, 17, 50, 10, 22, 9, 51, 52lspindp1 15813 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
6261simpld 447 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
631, 3, 13, 43, 17, 37, 44, 46, 2, 47, 5, 48, 49, 62, 7, 22hdmap1cl 31125 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
6460, 63eqeltrrd 2331 . . . . . . . . 9  |-  ( ph  ->  E  e.  D )
651, 3, 13, 14, 43, 17, 37, 44, 45, 46, 2, 47, 5, 7, 48, 20, 64, 62, 49hdmap1eq 31122 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( L `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `
 { ( F R E ) } ) ) ) )
6660, 65mpbid 203 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Z } ) )  =  ( L `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `
 { ( F R E ) } ) ) )
6766simpld 447 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Z } ) )  =  ( L `  { E } ) )
6859, 67oveq12d 5775 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  Y ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) )  =  ( ( L `  { ( F R G ) } ) ( LSSum `  C )
( L `  { E } ) ) )
6966simprd 451 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `  { ( F R E ) } ) )
7058simpld 447 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( L `  { G } ) )
7169, 70oveq12d 5775 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  Z ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { Y }
) ) )  =  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) )
7268, 71ineq12d 3313 . . . 4  |-  ( ph  ->  ( ( ( M `
 ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Z } ) ) )  i^i  ( ( M `
 ( N `  { ( X  .-  Z ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Y } ) ) ) )  =  ( ( ( L `  {
( F R G ) } ) (
LSSum `  C ) ( L `  { E } ) )  i^i  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) ) )
7341, 72eqtrd 2288 . . 3  |-  ( ph  ->  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( L `  {
( F R G ) } ) (
LSSum `  C ) ( L `  { E } ) )  i^i  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) ) )
7436, 73eqtrd 2288 . 2  |-  ( ph  ->  ( M `  (
( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( L `  {
( F R G ) } ) (
LSSum `  C ) ( L `  { E } ) )  i^i  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) ) )
75 hdmap1l6.p . . . 4  |-  .+  =  ( +g  `  U )
7613, 14, 43, 25, 17, 50, 9, 52, 51, 10, 20, 75baerlem5a 31034 . . 3  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  Z ) ) } )  =  ( ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )
7776fveq2d 5427 . 2  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( M `  ( ( ( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) ) )
78 hdmap1l6.q . . 3  |-  Q  =  ( 0g `  C
)
791, 37, 5lcdlvec 30911 . . 3  |-  ( ph  ->  C  e.  LVec )
801, 2, 3, 13, 17, 37, 44, 46, 5, 48, 49, 9, 12, 56, 70, 22, 64, 67, 52mapdindp 30991 . . 3  |-  ( ph  ->  -.  F  e.  ( L `  { G ,  E } ) )
811, 2, 3, 13, 17, 37, 44, 46, 5, 56, 70, 12, 22, 64, 67, 51mapdncol 30990 . . 3  |-  ( ph  ->  ( L `  { G } )  =/=  ( L `  { E } ) )
821, 2, 3, 13, 17, 37, 44, 46, 5, 56, 70, 43, 78, 10mapdn0 30989 . . 3  |-  ( ph  ->  G  e.  ( D 
\  { Q }
) )
831, 2, 3, 13, 17, 37, 44, 46, 5, 64, 67, 43, 78, 20mapdn0 30989 . . 3  |-  ( ph  ->  E  e.  ( D 
\  { Q }
) )
84 hdmap1l6.a . . 3  |-  .+b  =  ( +g  `  C )
8544, 45, 78, 38, 46, 79, 48, 80, 81, 82, 83, 84baerlem5a 31034 . 2  |-  ( ph  ->  ( L `  {
( F R ( G  .+b  E )
) } )  =  ( ( ( L `
 { ( F R G ) } ) ( LSSum `  C
) ( L `  { E } ) )  i^i  ( ( L `
 { ( F R E ) } ) ( LSSum `  C
) ( L `  { G } ) ) ) )
8674, 77, 853eqtr4d 2298 1  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( G 
.+b  E ) ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419    \ cdif 3091    i^i cin 3093   {csn 3581   {cpr 3582   <.cotp 3585   ` cfv 4638  (class class class)co 5757   Basecbs 13075   +g cplusg 13135   0gc0g 13327   -gcsg 14292   LSSumclsm 14872   LModclmod 15554   LSubSpclss 15616   LSpanclspn 15655   HLchlt 28670   LHypclh 29303   DVecHcdvh 30398  LCDualclcd 30906  mapdcmpd 30944  HDMap1chdma1 31112
This theorem is referenced by:  hdmap1l6lem2  31129  hdmap1l6a  31130
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-ot 3591  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-tpos 6133  df-iota 6190  df-undef 6229  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-n0 9898  df-z 9957  df-uz 10163  df-fz 10714  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-sca 13151  df-vsca 13152  df-0g 13331  df-mre 13415  df-mrc 13416  df-acs 13418  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-mnd 14294  df-submnd 14343  df-grp 14416  df-minusg 14417  df-sbg 14418  df-subg 14545  df-cntz 14720  df-oppg 14746  df-lsm 14874  df-cmn 15018  df-abl 15019  df-mgp 15253  df-ring 15267  df-ur 15269  df-oppr 15332  df-dvdsr 15350  df-unit 15351  df-invr 15381  df-dvr 15392  df-drng 15441  df-lmod 15556  df-lss 15617  df-lsp 15656  df-lvec 15783  df-lsatoms 28296  df-lshyp 28297  df-lcv 28339  df-lfl 28378  df-lkr 28406  df-ldual 28444  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478  df-tgrp 30062  df-tendo 30074  df-edring 30076  df-dveca 30322  df-disoa 30349  df-dvech 30399  df-dib 30459  df-dic 30493  df-dih 30549  df-doch 30668  df-djh 30715  df-lcdual 30907  df-mapd 30945  df-hdmap1 31114
  Copyright terms: Public domain W3C validator