Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem1 Unicode version

Theorem hdmap1l6lem1 32620
Description: Lemma for hdmap1l6 32634. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h  |-  H  =  ( LHyp `  K
)
hdmap1l6.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1l6.v  |-  V  =  ( Base `  U
)
hdmap1l6.p  |-  .+  =  ( +g  `  U )
hdmap1l6.s  |-  .-  =  ( -g `  U )
hdmap1l6c.o  |-  .0.  =  ( 0g `  U )
hdmap1l6.n  |-  N  =  ( LSpan `  U )
hdmap1l6.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1l6.d  |-  D  =  ( Base `  C
)
hdmap1l6.a  |-  .+b  =  ( +g  `  C )
hdmap1l6.r  |-  R  =  ( -g `  C
)
hdmap1l6.q  |-  Q  =  ( 0g `  C
)
hdmap1l6.l  |-  L  =  ( LSpan `  C )
hdmap1l6.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1l6.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1l6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1l6.f  |-  ( ph  ->  F  e.  D )
hdmap1l6cl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1l6.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1l6e.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
hdmap1l6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
hdmap1l6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
hdmap1l6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
hdmap1l6lem1  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( G 
.+b  E ) ) } ) )

Proof of Theorem hdmap1l6lem1
StepHypRef Expression
1 hdmap1l6.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmap1l6.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 hdmap1l6.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2296 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
5 hdmap1l6.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
61, 3, 5dvhlmod 31922 . . . . 5  |-  ( ph  ->  U  e.  LMod )
7 hdmap1l6cl.x . . . . . . . 8  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
8 eldifi 3311 . . . . . . . 8  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  e.  V )
97, 8syl 15 . . . . . . 7  |-  ( ph  ->  X  e.  V )
10 hdmap1l6e.y . . . . . . . 8  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
11 eldifi 3311 . . . . . . . 8  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  Y  e.  V )
1210, 11syl 15 . . . . . . 7  |-  ( ph  ->  Y  e.  V )
13 hdmap1l6.v . . . . . . . 8  |-  V  =  ( Base `  U
)
14 hdmap1l6.s . . . . . . . 8  |-  .-  =  ( -g `  U )
1513, 14lmodvsubcl 15686 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
166, 9, 12, 15syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( X  .-  Y
)  e.  V )
17 hdmap1l6.n . . . . . . 7  |-  N  =  ( LSpan `  U )
1813, 4, 17lspsncl 15750 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Y )  e.  V )  ->  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U ) )
196, 16, 18syl2anc 642 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Y
) } )  e.  ( LSubSp `  U )
)
20 hdmap1l6e.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
21 eldifi 3311 . . . . . . 7  |-  ( Z  e.  ( V  \  {  .0.  } )  ->  Z  e.  V )
2220, 21syl 15 . . . . . 6  |-  ( ph  ->  Z  e.  V )
2313, 4, 17lspsncl 15750 . . . . . 6  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
246, 22, 23syl2anc 642 . . . . 5  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
25 eqid 2296 . . . . . 6  |-  ( LSSum `  U )  =  (
LSSum `  U )
264, 25lsmcl 15852 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U )  /\  ( N `  { Z } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  Y ) } ) ( LSSum `  U
) ( N `  { Z } ) )  e.  ( LSubSp `  U
) )
276, 19, 24, 26syl3anc 1182 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  e.  ( LSubSp `  U )
)
2813, 14lmodvsubcl 15686 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Z  e.  V )  ->  ( X  .-  Z )  e.  V )
296, 9, 22, 28syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( X  .-  Z
)  e.  V )
3013, 4, 17lspsncl 15750 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Z )  e.  V )  ->  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U ) )
316, 29, 30syl2anc 642 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Z
) } )  e.  ( LSubSp `  U )
)
3213, 4, 17lspsncl 15750 . . . . . 6  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
336, 12, 32syl2anc 642 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
344, 25lsmcl 15852 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U )  /\  ( N `  { Y } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  Z ) } ) ( LSSum `  U
) ( N `  { Y } ) )  e.  ( LSubSp `  U
) )
356, 31, 33, 34syl3anc 1182 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) )  e.  ( LSubSp `  U )
)
361, 2, 3, 4, 5, 27, 35mapdin 32474 . . 3  |-  ( ph  ->  ( M `  (
( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  i^i  ( M `  (
( N `  {
( X  .-  Z
) } ) (
LSSum `  U ) ( N `  { Y } ) ) ) ) )
37 hdmap1l6.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
38 eqid 2296 . . . . . 6  |-  ( LSSum `  C )  =  (
LSSum `  C )
391, 2, 3, 4, 25, 37, 38, 5, 19, 24mapdlsm 32476 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { Z } ) ) )  =  ( ( M `
 ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Z } ) ) ) )
401, 2, 3, 4, 25, 37, 38, 5, 31, 33mapdlsm 32476 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Z
) } ) (
LSSum `  U ) ( N `  { Y } ) ) )  =  ( ( M `
 ( N `  { ( X  .-  Z ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Y } ) ) ) )
4139, 40ineq12d 3384 . . . 4  |-  ( ph  ->  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( M `  ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C ) ( M `
 ( N `  { Z } ) ) )  i^i  ( ( M `  ( N `
 { ( X 
.-  Z ) } ) ) ( LSSum `  C ) ( M `
 ( N `  { Y } ) ) ) ) )
42 hdmap1l6.fg . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
43 hdmap1l6c.o . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
44 hdmap1l6.d . . . . . . . . 9  |-  D  =  ( Base `  C
)
45 hdmap1l6.r . . . . . . . . 9  |-  R  =  ( -g `  C
)
46 hdmap1l6.l . . . . . . . . 9  |-  L  =  ( LSpan `  C )
47 hdmap1l6.i . . . . . . . . 9  |-  I  =  ( (HDMap1 `  K
) `  W )
48 hdmap1l6.f . . . . . . . . 9  |-  ( ph  ->  F  e.  D )
49 hdmap1l6.mn . . . . . . . . . . 11  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
501, 3, 5dvhlvec 31921 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LVec )
51 hdmap1l6.yz . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
52 hdmap1l6e.xn . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
5313, 43, 17, 50, 12, 20, 9, 51, 52lspindp2 15904 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
5453simpld 445 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
551, 3, 13, 43, 17, 37, 44, 46, 2, 47, 5, 48, 49, 54, 7, 12hdmap1cl 32617 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
5642, 55eqeltrrd 2371 . . . . . . . . 9  |-  ( ph  ->  G  e.  D )
571, 3, 13, 14, 43, 17, 37, 44, 45, 46, 2, 47, 5, 7, 48, 10, 56, 54, 49hdmap1eq 32614 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )
5842, 57mpbid 201 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) )
5958simprd 449 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `  { ( F R G ) } ) )
60 hdmap1l6.fe . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
6113, 43, 17, 50, 10, 22, 9, 51, 52lspindp1 15902 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
6261simpld 445 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
631, 3, 13, 43, 17, 37, 44, 46, 2, 47, 5, 48, 49, 62, 7, 22hdmap1cl 32617 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
6460, 63eqeltrrd 2371 . . . . . . . . 9  |-  ( ph  ->  E  e.  D )
651, 3, 13, 14, 43, 17, 37, 44, 45, 46, 2, 47, 5, 7, 48, 20, 64, 62, 49hdmap1eq 32614 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( L `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `
 { ( F R E ) } ) ) ) )
6660, 65mpbid 201 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Z } ) )  =  ( L `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `
 { ( F R E ) } ) ) )
6766simpld 445 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Z } ) )  =  ( L `  { E } ) )
6859, 67oveq12d 5892 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  Y ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) )  =  ( ( L `  { ( F R G ) } ) ( LSSum `  C )
( L `  { E } ) ) )
6966simprd 449 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `  { ( F R E ) } ) )
7058simpld 445 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( L `  { G } ) )
7169, 70oveq12d 5892 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  Z ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { Y }
) ) )  =  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) )
7268, 71ineq12d 3384 . . . 4  |-  ( ph  ->  ( ( ( M `
 ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Z } ) ) )  i^i  ( ( M `
 ( N `  { ( X  .-  Z ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Y } ) ) ) )  =  ( ( ( L `  {
( F R G ) } ) (
LSSum `  C ) ( L `  { E } ) )  i^i  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) ) )
7341, 72eqtrd 2328 . . 3  |-  ( ph  ->  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( L `  {
( F R G ) } ) (
LSSum `  C ) ( L `  { E } ) )  i^i  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) ) )
7436, 73eqtrd 2328 . 2  |-  ( ph  ->  ( M `  (
( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( L `  {
( F R G ) } ) (
LSSum `  C ) ( L `  { E } ) )  i^i  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) ) )
75 hdmap1l6.p . . . 4  |-  .+  =  ( +g  `  U )
7613, 14, 43, 25, 17, 50, 9, 52, 51, 10, 20, 75baerlem5a 32526 . . 3  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  Z ) ) } )  =  ( ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )
7776fveq2d 5545 . 2  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( M `  ( ( ( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) ) )
78 hdmap1l6.q . . 3  |-  Q  =  ( 0g `  C
)
791, 37, 5lcdlvec 32403 . . 3  |-  ( ph  ->  C  e.  LVec )
801, 2, 3, 13, 17, 37, 44, 46, 5, 48, 49, 9, 12, 56, 70, 22, 64, 67, 52mapdindp 32483 . . 3  |-  ( ph  ->  -.  F  e.  ( L `  { G ,  E } ) )
811, 2, 3, 13, 17, 37, 44, 46, 5, 56, 70, 12, 22, 64, 67, 51mapdncol 32482 . . 3  |-  ( ph  ->  ( L `  { G } )  =/=  ( L `  { E } ) )
821, 2, 3, 13, 17, 37, 44, 46, 5, 56, 70, 43, 78, 10mapdn0 32481 . . 3  |-  ( ph  ->  G  e.  ( D 
\  { Q }
) )
831, 2, 3, 13, 17, 37, 44, 46, 5, 64, 67, 43, 78, 20mapdn0 32481 . . 3  |-  ( ph  ->  E  e.  ( D 
\  { Q }
) )
84 hdmap1l6.a . . 3  |-  .+b  =  ( +g  `  C )
8544, 45, 78, 38, 46, 79, 48, 80, 81, 82, 83, 84baerlem5a 32526 . 2  |-  ( ph  ->  ( L `  {
( F R ( G  .+b  E )
) } )  =  ( ( ( L `
 { ( F R G ) } ) ( LSSum `  C
) ( L `  { E } ) )  i^i  ( ( L `
 { ( F R E ) } ) ( LSSum `  C
) ( L `  { G } ) ) ) )
8674, 77, 853eqtr4d 2338 1  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( G 
.+b  E ) ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459    \ cdif 3162    i^i cin 3164   {csn 3653   {cpr 3654   <.cotp 3657   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416   -gcsg 14381   LSSumclsm 14961   LModclmod 15643   LSubSpclss 15705   LSpanclspn 15744   HLchlt 30162   LHypclh 30795   DVecHcdvh 31890  LCDualclcd 32398  mapdcmpd 32436  HDMap1chdma1 32604
This theorem is referenced by:  hdmap1l6lem2  32621  hdmap1l6a  32622
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-ot 3663  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-undef 6314  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-0g 13420  df-mre 13504  df-mrc 13505  df-acs 13507  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-cntz 14809  df-oppg 14835  df-lsm 14963  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-drng 15530  df-lmod 15645  df-lss 15706  df-lsp 15745  df-lvec 15872  df-lsatoms 29788  df-lshyp 29789  df-lcv 29831  df-lfl 29870  df-lkr 29898  df-ldual 29936  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-tgrp 31554  df-tendo 31566  df-edring 31568  df-dveca 31814  df-disoa 31841  df-dvech 31891  df-dib 31951  df-dic 31985  df-dih 32041  df-doch 32160  df-djh 32207  df-lcdual 32399  df-mapd 32437  df-hdmap1 32606
  Copyright terms: Public domain W3C validator