Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem1 Unicode version

Theorem hdmap1l6lem1 32337
Description: Lemma for hdmap1l6 32351. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h  |-  H  =  ( LHyp `  K
)
hdmap1l6.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1l6.v  |-  V  =  ( Base `  U
)
hdmap1l6.p  |-  .+  =  ( +g  `  U )
hdmap1l6.s  |-  .-  =  ( -g `  U )
hdmap1l6c.o  |-  .0.  =  ( 0g `  U )
hdmap1l6.n  |-  N  =  ( LSpan `  U )
hdmap1l6.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1l6.d  |-  D  =  ( Base `  C
)
hdmap1l6.a  |-  .+b  =  ( +g  `  C )
hdmap1l6.r  |-  R  =  ( -g `  C
)
hdmap1l6.q  |-  Q  =  ( 0g `  C
)
hdmap1l6.l  |-  L  =  ( LSpan `  C )
hdmap1l6.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1l6.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1l6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1l6.f  |-  ( ph  ->  F  e.  D )
hdmap1l6cl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1l6.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1l6e.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
hdmap1l6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
hdmap1l6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
hdmap1l6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
hdmap1l6lem1  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( G 
.+b  E ) ) } ) )

Proof of Theorem hdmap1l6lem1
StepHypRef Expression
1 hdmap1l6.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmap1l6.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 hdmap1l6.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2430 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
5 hdmap1l6.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
61, 3, 5dvhlmod 31639 . . . . 5  |-  ( ph  ->  U  e.  LMod )
7 hdmap1l6cl.x . . . . . . . 8  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
87eldifad 3319 . . . . . . 7  |-  ( ph  ->  X  e.  V )
9 hdmap1l6e.y . . . . . . . 8  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
109eldifad 3319 . . . . . . 7  |-  ( ph  ->  Y  e.  V )
11 hdmap1l6.v . . . . . . . 8  |-  V  =  ( Base `  U
)
12 hdmap1l6.s . . . . . . . 8  |-  .-  =  ( -g `  U )
1311, 12lmodvsubcl 15972 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
146, 8, 10, 13syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( X  .-  Y
)  e.  V )
15 hdmap1l6.n . . . . . . 7  |-  N  =  ( LSpan `  U )
1611, 4, 15lspsncl 16036 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Y )  e.  V )  ->  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U ) )
176, 14, 16syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Y
) } )  e.  ( LSubSp `  U )
)
18 hdmap1l6e.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
1918eldifad 3319 . . . . . 6  |-  ( ph  ->  Z  e.  V )
2011, 4, 15lspsncl 16036 . . . . . 6  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
216, 19, 20syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
22 eqid 2430 . . . . . 6  |-  ( LSSum `  U )  =  (
LSSum `  U )
234, 22lsmcl 16138 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  Y ) } )  e.  ( LSubSp `  U )  /\  ( N `  { Z } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  Y ) } ) ( LSSum `  U
) ( N `  { Z } ) )  e.  ( LSubSp `  U
) )
246, 17, 21, 23syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  e.  ( LSubSp `  U )
)
2511, 12lmodvsubcl 15972 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  Z  e.  V )  ->  ( X  .-  Z )  e.  V )
266, 8, 19, 25syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( X  .-  Z
)  e.  V )
2711, 4, 15lspsncl 16036 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  Z )  e.  V )  ->  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U ) )
286, 26, 27syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  Z
) } )  e.  ( LSubSp `  U )
)
2911, 4, 15lspsncl 16036 . . . . . 6  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
306, 10, 29syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
314, 22lsmcl 16138 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  Z ) } )  e.  ( LSubSp `  U )  /\  ( N `  { Y } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  Z ) } ) ( LSSum `  U
) ( N `  { Y } ) )  e.  ( LSubSp `  U
) )
326, 28, 30, 31syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) )  e.  ( LSubSp `  U )
)
331, 2, 3, 4, 5, 24, 32mapdin 32191 . . 3  |-  ( ph  ->  ( M `  (
( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  i^i  ( M `  (
( N `  {
( X  .-  Z
) } ) (
LSSum `  U ) ( N `  { Y } ) ) ) ) )
34 hdmap1l6.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
35 eqid 2430 . . . . . 6  |-  ( LSSum `  C )  =  (
LSSum `  C )
361, 2, 3, 4, 22, 34, 35, 5, 17, 21mapdlsm 32193 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { Z } ) ) )  =  ( ( M `
 ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Z } ) ) ) )
371, 2, 3, 4, 22, 34, 35, 5, 28, 30mapdlsm 32193 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  Z
) } ) (
LSSum `  U ) ( N `  { Y } ) ) )  =  ( ( M `
 ( N `  { ( X  .-  Z ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Y } ) ) ) )
3836, 37ineq12d 3530 . . . 4  |-  ( ph  ->  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( M `  ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C ) ( M `
 ( N `  { Z } ) ) )  i^i  ( ( M `  ( N `
 { ( X 
.-  Z ) } ) ) ( LSSum `  C ) ( M `
 ( N `  { Y } ) ) ) ) )
39 hdmap1l6.fg . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
40 hdmap1l6c.o . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
41 hdmap1l6.d . . . . . . . . 9  |-  D  =  ( Base `  C
)
42 hdmap1l6.r . . . . . . . . 9  |-  R  =  ( -g `  C
)
43 hdmap1l6.l . . . . . . . . 9  |-  L  =  ( LSpan `  C )
44 hdmap1l6.i . . . . . . . . 9  |-  I  =  ( (HDMap1 `  K
) `  W )
45 hdmap1l6.f . . . . . . . . 9  |-  ( ph  ->  F  e.  D )
46 hdmap1l6.mn . . . . . . . . . . 11  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
471, 3, 5dvhlvec 31638 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LVec )
48 hdmap1l6.yz . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
49 hdmap1l6e.xn . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
5011, 40, 15, 47, 10, 18, 8, 48, 49lspindp2 16190 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
5150simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
521, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 51, 7, 10hdmap1cl 32334 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
5339, 52eqeltrrd 2505 . . . . . . . . 9  |-  ( ph  ->  G  e.  D )
541, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 9, 53, 51, 46hdmap1eq 32331 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )
5539, 54mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) )
5655simprd 450 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `  { ( F R G ) } ) )
57 hdmap1l6.fe . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
5811, 40, 15, 47, 9, 19, 8, 48, 49lspindp1 16188 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
5958simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
601, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 59, 7, 19hdmap1cl 32334 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
6157, 60eqeltrrd 2505 . . . . . . . . 9  |-  ( ph  ->  E  e.  D )
621, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 18, 61, 59, 46hdmap1eq 32331 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( L `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `
 { ( F R E ) } ) ) ) )
6357, 62mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Z } ) )  =  ( L `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `
 { ( F R E ) } ) ) )
6463simpld 446 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Z } ) )  =  ( L `  { E } ) )
6556, 64oveq12d 6085 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  Y ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) )  =  ( ( L `  { ( F R G ) } ) ( LSSum `  C )
( L `  { E } ) ) )
6663simprd 450 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `  { ( F R E ) } ) )
6755simpld 446 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( L `  { G } ) )
6866, 67oveq12d 6085 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  Z ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { Y }
) ) )  =  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) )
6965, 68ineq12d 3530 . . . 4  |-  ( ph  ->  ( ( ( M `
 ( N `  { ( X  .-  Y ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Z } ) ) )  i^i  ( ( M `
 ( N `  { ( X  .-  Z ) } ) ) ( LSSum `  C
) ( M `  ( N `  { Y } ) ) ) )  =  ( ( ( L `  {
( F R G ) } ) (
LSSum `  C ) ( L `  { E } ) )  i^i  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) ) )
7038, 69eqtrd 2462 . . 3  |-  ( ph  ->  ( ( M `  ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( L `  {
( F R G ) } ) (
LSSum `  C ) ( L `  { E } ) )  i^i  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) ) )
7133, 70eqtrd 2462 . 2  |-  ( ph  ->  ( M `  (
( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )  =  ( ( ( L `  {
( F R G ) } ) (
LSSum `  C ) ( L `  { E } ) )  i^i  ( ( L `  { ( F R E ) } ) ( LSSum `  C )
( L `  { G } ) ) ) )
72 hdmap1l6.p . . . 4  |-  .+  =  ( +g  `  U )
7311, 12, 40, 22, 15, 47, 8, 49, 48, 9, 18, 72baerlem5a 32243 . . 3  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  Z ) ) } )  =  ( ( ( N `  { ( X  .-  Y ) } ) ( LSSum `  U )
( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) )
7473fveq2d 5718 . 2  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( M `  ( ( ( N `  {
( X  .-  Y
) } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  Z ) } ) ( LSSum `  U )
( N `  { Y } ) ) ) ) )
75 hdmap1l6.q . . 3  |-  Q  =  ( 0g `  C
)
761, 34, 5lcdlvec 32120 . . 3  |-  ( ph  ->  C  e.  LVec )
771, 2, 3, 11, 15, 34, 41, 43, 5, 45, 46, 8, 10, 53, 67, 19, 61, 64, 49mapdindp 32200 . . 3  |-  ( ph  ->  -.  F  e.  ( L `  { G ,  E } ) )
781, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 10, 19, 61, 64, 48mapdncol 32199 . . 3  |-  ( ph  ->  ( L `  { G } )  =/=  ( L `  { E } ) )
791, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 40, 75, 9mapdn0 32198 . . 3  |-  ( ph  ->  G  e.  ( D 
\  { Q }
) )
801, 2, 3, 11, 15, 34, 41, 43, 5, 61, 64, 40, 75, 18mapdn0 32198 . . 3  |-  ( ph  ->  E  e.  ( D 
\  { Q }
) )
81 hdmap1l6.a . . 3  |-  .+b  =  ( +g  `  C )
8241, 42, 75, 35, 43, 76, 45, 77, 78, 79, 80, 81baerlem5a 32243 . 2  |-  ( ph  ->  ( L `  {
( F R ( G  .+b  E )
) } )  =  ( ( ( L `
 { ( F R G ) } ) ( LSSum `  C
) ( L `  { E } ) )  i^i  ( ( L `
 { ( F R E ) } ) ( LSSum `  C
) ( L `  { G } ) ) ) )
8371, 74, 823eqtr4d 2472 1  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( G 
.+b  E ) ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2593    \ cdif 3304    i^i cin 3306   {csn 3801   {cpr 3802   <.cotp 3805   ` cfv 5440  (class class class)co 6067   Basecbs 13452   +g cplusg 13512   0gc0g 13706   -gcsg 14671   LSSumclsm 15251   LModclmod 15933   LSubSpclss 15991   LSpanclspn 16030   HLchlt 29879   LHypclh 30512   DVecHcdvh 31607  LCDualclcd 32115  mapdcmpd 32153  HDMap1chdma1 32321
This theorem is referenced by:  hdmap1l6lem2  32338  hdmap1l6a  32339
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-ot 3811  df-uni 4003  df-int 4038  df-iun 4082  df-iin 4083  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-of 6291  df-1st 6335  df-2nd 6336  df-tpos 6465  df-undef 6529  df-riota 6535  df-recs 6619  df-rdg 6654  df-1o 6710  df-oadd 6714  df-er 6891  df-map 7006  df-en 7096  df-dom 7097  df-sdom 7098  df-fin 7099  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-nn 9985  df-2 10042  df-3 10043  df-4 10044  df-5 10045  df-6 10046  df-n0 10206  df-z 10267  df-uz 10473  df-fz 11028  df-struct 13454  df-ndx 13455  df-slot 13456  df-base 13457  df-sets 13458  df-ress 13459  df-plusg 13525  df-mulr 13526  df-sca 13528  df-vsca 13529  df-0g 13710  df-mre 13794  df-mrc 13795  df-acs 13797  df-poset 14386  df-plt 14398  df-lub 14414  df-glb 14415  df-join 14416  df-meet 14417  df-p0 14451  df-p1 14452  df-lat 14458  df-clat 14520  df-mnd 14673  df-submnd 14722  df-grp 14795  df-minusg 14796  df-sbg 14797  df-subg 14924  df-cntz 15099  df-oppg 15125  df-lsm 15253  df-cmn 15397  df-abl 15398  df-mgp 15632  df-rng 15646  df-ur 15648  df-oppr 15711  df-dvdsr 15729  df-unit 15730  df-invr 15760  df-dvr 15771  df-drng 15820  df-lmod 15935  df-lss 15992  df-lsp 16031  df-lvec 16158  df-lsatoms 29505  df-lshyp 29506  df-lcv 29548  df-lfl 29587  df-lkr 29615  df-ldual 29653  df-oposet 29705  df-ol 29707  df-oml 29708  df-covers 29795  df-ats 29796  df-atl 29827  df-cvlat 29851  df-hlat 29880  df-llines 30026  df-lplanes 30027  df-lvols 30028  df-lines 30029  df-psubsp 30031  df-pmap 30032  df-padd 30324  df-lhyp 30516  df-laut 30517  df-ldil 30632  df-ltrn 30633  df-trl 30687  df-tgrp 31271  df-tendo 31283  df-edring 31285  df-dveca 31531  df-disoa 31558  df-dvech 31608  df-dib 31668  df-dic 31702  df-dih 31758  df-doch 31877  df-djh 31924  df-lcdual 32116  df-mapd 32154  df-hdmap1 32323
  Copyright terms: Public domain W3C validator