Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem2 Unicode version

Theorem hdmap1l6lem2 31278
Description: Lemma for hdmap1l6 31291. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h  |-  H  =  ( LHyp `  K
)
hdmap1l6.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1l6.v  |-  V  =  ( Base `  U
)
hdmap1l6.p  |-  .+  =  ( +g  `  U )
hdmap1l6.s  |-  .-  =  ( -g `  U )
hdmap1l6c.o  |-  .0.  =  ( 0g `  U )
hdmap1l6.n  |-  N  =  ( LSpan `  U )
hdmap1l6.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1l6.d  |-  D  =  ( Base `  C
)
hdmap1l6.a  |-  .+b  =  ( +g  `  C )
hdmap1l6.r  |-  R  =  ( -g `  C
)
hdmap1l6.q  |-  Q  =  ( 0g `  C
)
hdmap1l6.l  |-  L  =  ( LSpan `  C )
hdmap1l6.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1l6.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1l6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1l6.f  |-  ( ph  ->  F  e.  D )
hdmap1l6cl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1l6.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1l6e.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
hdmap1l6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
hdmap1l6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
hdmap1l6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
hdmap1l6lem2  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( L `  { ( G  .+b  E ) } ) )

Proof of Theorem hdmap1l6lem2
StepHypRef Expression
1 hdmap1l6.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmap1l6.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 hdmap1l6.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2284 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
5 hdmap1l6.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
61, 3, 5dvhlmod 30579 . . . . 5  |-  ( ph  ->  U  e.  LMod )
7 hdmap1l6e.y . . . . . . 7  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
8 eldifi 3299 . . . . . . 7  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  Y  e.  V )
97, 8syl 15 . . . . . 6  |-  ( ph  ->  Y  e.  V )
10 hdmap1l6.v . . . . . . 7  |-  V  =  ( Base `  U
)
11 hdmap1l6.n . . . . . . 7  |-  N  =  ( LSpan `  U )
1210, 4, 11lspsncl 15730 . . . . . 6  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
136, 9, 12syl2anc 642 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
14 hdmap1l6e.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
15 eldifi 3299 . . . . . . 7  |-  ( Z  e.  ( V  \  {  .0.  } )  ->  Z  e.  V )
1614, 15syl 15 . . . . . 6  |-  ( ph  ->  Z  e.  V )
1710, 4, 11lspsncl 15730 . . . . . 6  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
186, 16, 17syl2anc 642 . . . . 5  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
19 eqid 2284 . . . . . 6  |-  ( LSSum `  U )  =  (
LSSum `  U )
204, 19lsmcl 15832 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { Y } )  e.  (
LSubSp `  U )  /\  ( N `  { Z } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { Y }
) ( LSSum `  U
) ( N `  { Z } ) )  e.  ( LSubSp `  U
) )
216, 13, 18, 20syl3anc 1182 . . . 4  |-  ( ph  ->  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  e.  ( LSubSp `  U )
)
22 hdmap1l6cl.x . . . . . . . 8  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
23 eldifi 3299 . . . . . . . 8  |-  ( X  e.  ( V  \  {  .0.  } )  ->  X  e.  V )
2422, 23syl 15 . . . . . . 7  |-  ( ph  ->  X  e.  V )
25 hdmap1l6.p . . . . . . . . 9  |-  .+  =  ( +g  `  U )
2610, 25lmodvacl 15637 . . . . . . . 8  |-  ( ( U  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .+  Z )  e.  V )
276, 9, 16, 26syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( Y  .+  Z
)  e.  V )
28 hdmap1l6.s . . . . . . . 8  |-  .-  =  ( -g `  U )
2910, 28lmodvsubcl 15666 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  ( Y  .+  Z )  e.  V )  ->  ( X  .-  ( Y  .+  Z ) )  e.  V )
306, 24, 27, 29syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( X  .-  ( Y  .+  Z ) )  e.  V )
3110, 4, 11lspsncl 15730 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  ( Y  .+  Z ) )  e.  V )  ->  ( N `  { ( X  .-  ( Y  .+  Z ) ) } )  e.  ( LSubSp `  U ) )
326, 30, 31syl2anc 642 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  Z ) ) } )  e.  (
LSubSp `  U ) )
3310, 4, 11lspsncl 15730 . . . . . 6  |-  ( ( U  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
346, 24, 33syl2anc 642 . . . . 5  |-  ( ph  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
354, 19lsmcl 15832 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  ( Y  .+  Z ) ) } )  e.  ( LSubSp `  U )  /\  ( N `  { X } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  ( Y  .+  Z ) ) } ) ( LSSum `  U
) ( N `  { X } ) )  e.  ( LSubSp `  U
) )
366, 32, 34, 35syl3anc 1182 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) )  e.  ( LSubSp `  U )
)
371, 2, 3, 4, 5, 21, 36mapdin 31131 . . 3  |-  ( ph  ->  ( M `  (
( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) ) ) )  =  ( ( M `  ( ( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  i^i  ( M `  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) ) ) )
38 hdmap1l6.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
39 eqid 2284 . . . . . 6  |-  ( LSSum `  C )  =  (
LSSum `  C )
401, 2, 3, 4, 19, 38, 39, 5, 13, 18mapdlsm 31133 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  =  ( ( M `  ( N `  { Y } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) ) )
41 hdmap1l6.fg . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
42 hdmap1l6c.o . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
43 hdmap1l6.d . . . . . . . . 9  |-  D  =  ( Base `  C
)
44 hdmap1l6.r . . . . . . . . 9  |-  R  =  ( -g `  C
)
45 hdmap1l6.l . . . . . . . . 9  |-  L  =  ( LSpan `  C )
46 hdmap1l6.i . . . . . . . . 9  |-  I  =  ( (HDMap1 `  K
) `  W )
47 hdmap1l6.f . . . . . . . . 9  |-  ( ph  ->  F  e.  D )
48 hdmap1l6.mn . . . . . . . . . . 11  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
491, 3, 5dvhlvec 30578 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LVec )
50 hdmap1l6.yz . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
51 hdmap1l6e.xn . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
5210, 42, 11, 49, 9, 14, 24, 50, 51lspindp2 15884 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
5352simpld 445 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
541, 3, 10, 42, 11, 38, 43, 45, 2, 46, 5, 47, 48, 53, 22, 9hdmap1cl 31274 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
5541, 54eqeltrrd 2359 . . . . . . . . 9  |-  ( ph  ->  G  e.  D )
561, 3, 10, 28, 42, 11, 38, 43, 44, 45, 2, 46, 5, 22, 47, 7, 55, 53, 48hdmap1eq 31271 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )
5741, 56mpbid 201 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) )
5857simpld 445 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( L `  { G } ) )
59 hdmap1l6.fe . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
6010, 42, 11, 49, 7, 16, 24, 50, 51lspindp1 15882 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
6160simpld 445 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
621, 3, 10, 42, 11, 38, 43, 45, 2, 46, 5, 47, 48, 61, 22, 16hdmap1cl 31274 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
6359, 62eqeltrrd 2359 . . . . . . . . 9  |-  ( ph  ->  E  e.  D )
641, 3, 10, 28, 42, 11, 38, 43, 44, 45, 2, 46, 5, 22, 47, 14, 63, 61, 48hdmap1eq 31271 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( L `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `
 { ( F R E ) } ) ) ) )
6559, 64mpbid 201 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Z } ) )  =  ( L `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( L `
 { ( F R E ) } ) ) )
6665simpld 445 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Z } ) )  =  ( L `  { E } ) )
6758, 66oveq12d 5838 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) )  =  ( ( L `  { G } ) (
LSSum `  C ) ( L `  { E } ) ) )
6840, 67eqtrd 2316 . . . 4  |-  ( ph  ->  ( M `  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  =  ( ( L `  { G } ) (
LSSum `  C ) ( L `  { E } ) ) )
691, 2, 3, 4, 19, 38, 39, 5, 32, 34mapdlsm 31133 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) )  =  ( ( M `  ( N `  { ( X  .-  ( Y 
.+  Z ) ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { X }
) ) ) )
70 hdmap1l6.a . . . . . . 7  |-  .+b  =  ( +g  `  C )
71 hdmap1l6.q . . . . . . 7  |-  Q  =  ( 0g `  C
)
721, 3, 10, 25, 28, 42, 11, 38, 43, 70, 44, 71, 45, 2, 46, 5, 47, 22, 48, 7, 14, 51, 50, 41, 59hdmap1l6lem1 31277 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( G 
.+b  E ) ) } ) )
7372, 48oveq12d 5838 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  ( Y 
.+  Z ) ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { X }
) ) )  =  ( ( L `  { ( F R ( G  .+b  E
) ) } ) ( LSSum `  C )
( L `  { F } ) ) )
7469, 73eqtrd 2316 . . . 4  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) )  =  ( ( L `  { ( F R ( G  .+b  E
) ) } ) ( LSSum `  C )
( L `  { F } ) ) )
7568, 74ineq12d 3372 . . 3  |-  ( ph  ->  ( ( M `  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) ) ) )  =  ( ( ( L `  { G } ) ( LSSum `  C ) ( L `
 { E }
) )  i^i  (
( L `  {
( F R ( G  .+b  E )
) } ) (
LSSum `  C ) ( L `  { F } ) ) ) )
7637, 75eqtrd 2316 . 2  |-  ( ph  ->  ( M `  (
( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) ) ) )  =  ( ( ( L `  { G } ) ( LSSum `  C ) ( L `
 { E }
) )  i^i  (
( L `  {
( F R ( G  .+b  E )
) } ) (
LSSum `  C ) ( L `  { F } ) ) ) )
7710, 28, 42, 19, 11, 49, 24, 51, 50, 7, 14, 25baerlem5b 31184 . . 3  |-  ( ph  ->  ( N `  {
( Y  .+  Z
) } )  =  ( ( ( N `
 { Y }
) ( LSSum `  U
) ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  ( Y  .+  Z ) ) } ) ( LSSum `  U
) ( N `  { X } ) ) ) )
7877fveq2d 5490 . 2  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( M `  ( ( ( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) )  i^i  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) ) ) )
791, 38, 5lcdlvec 31060 . . 3  |-  ( ph  ->  C  e.  LVec )
801, 2, 3, 10, 11, 38, 43, 45, 5, 47, 48, 24, 9, 55, 58, 16, 63, 66, 51mapdindp 31140 . . 3  |-  ( ph  ->  -.  F  e.  ( L `  { G ,  E } ) )
811, 2, 3, 10, 11, 38, 43, 45, 5, 55, 58, 9, 16, 63, 66, 50mapdncol 31139 . . 3  |-  ( ph  ->  ( L `  { G } )  =/=  ( L `  { E } ) )
821, 2, 3, 10, 11, 38, 43, 45, 5, 55, 58, 42, 71, 7mapdn0 31138 . . 3  |-  ( ph  ->  G  e.  ( D 
\  { Q }
) )
831, 2, 3, 10, 11, 38, 43, 45, 5, 63, 66, 42, 71, 14mapdn0 31138 . . 3  |-  ( ph  ->  E  e.  ( D 
\  { Q }
) )
8443, 44, 71, 39, 45, 79, 47, 80, 81, 82, 83, 70baerlem5b 31184 . 2  |-  ( ph  ->  ( L `  {
( G  .+b  E
) } )  =  ( ( ( L `
 { G }
) ( LSSum `  C
) ( L `  { E } ) )  i^i  ( ( L `
 { ( F R ( G  .+b  E ) ) } ) ( LSSum `  C )
( L `  { F } ) ) ) )
8576, 78, 843eqtr4d 2326 1  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( L `  { ( G  .+b  E ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685    =/= wne 2447    \ cdif 3150    i^i cin 3152   {csn 3641   {cpr 3642   <.cotp 3645   ` cfv 5221  (class class class)co 5820   Basecbs 13144   +g cplusg 13204   0gc0g 13396   -gcsg 14361   LSSumclsm 14941   LModclmod 15623   LSubSpclss 15685   LSpanclspn 15724   HLchlt 28819   LHypclh 29452   DVecHcdvh 30547  LCDualclcd 31055  mapdcmpd 31093  HDMap1chdma1 31261
This theorem is referenced by:  hdmap1l6a  31279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-ot 3651  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-tpos 6196  df-iota 6253  df-undef 6292  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-n0 9962  df-z 10021  df-uz 10227  df-fz 10779  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-sca 13220  df-vsca 13221  df-0g 13400  df-mre 13484  df-mrc 13485  df-acs 13487  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-mnd 14363  df-submnd 14412  df-grp 14485  df-minusg 14486  df-sbg 14487  df-subg 14614  df-cntz 14789  df-oppg 14815  df-lsm 14943  df-cmn 15087  df-abl 15088  df-mgp 15322  df-rng 15336  df-ur 15338  df-oppr 15401  df-dvdsr 15419  df-unit 15420  df-invr 15450  df-dvr 15461  df-drng 15510  df-lmod 15625  df-lss 15686  df-lsp 15725  df-lvec 15852  df-lsatoms 28445  df-lshyp 28446  df-lcv 28488  df-lfl 28527  df-lkr 28555  df-ldual 28593  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-llines 28966  df-lplanes 28967  df-lvols 28968  df-lines 28969  df-psubsp 28971  df-pmap 28972  df-padd 29264  df-lhyp 29456  df-laut 29457  df-ldil 29572  df-ltrn 29573  df-trl 29627  df-tgrp 30211  df-tendo 30223  df-edring 30225  df-dveca 30471  df-disoa 30498  df-dvech 30548  df-dib 30608  df-dic 30642  df-dih 30698  df-doch 30817  df-djh 30864  df-lcdual 31056  df-mapd 31094  df-hdmap1 31263
  Copyright terms: Public domain W3C validator