Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapfnN Unicode version

Theorem hdmapfnN 32644
Description: Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmapfn.h  |-  H  =  ( LHyp `  K
)
hdmapfn.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmapfn.v  |-  V  =  ( Base `  U
)
hdmapfn.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmapfn.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
hdmapfnN  |-  ( ph  ->  S  Fn  V )

Proof of Theorem hdmapfnN
Dummy variables  y 
t  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 6324 . . 3  |-  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  W ) ) A. z  e.  V  ( -.  z  e.  (
( ( LSpan `  U
) `  { <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. } )  u.  (
( LSpan `  U ) `  { t } ) )  ->  y  =  ( ( (HDMap1 `  K ) `  W
) `  <. z ,  ( ( (HDMap1 `  K ) `  W
) `  <. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. ,  ( ( (HVMap `  K ) `  W
) `  <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >.
) ,  z >.
) ,  t >.
) ) )  e. 
_V
2 eqid 2296 . . 3  |-  ( t  e.  V  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  W ) ) A. z  e.  V  ( -.  z  e.  (
( ( LSpan `  U
) `  { <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. } )  u.  (
( LSpan `  U ) `  { t } ) )  ->  y  =  ( ( (HDMap1 `  K ) `  W
) `  <. z ,  ( ( (HDMap1 `  K ) `  W
) `  <. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. ,  ( ( (HVMap `  K ) `  W
) `  <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >.
) ,  z >.
) ,  t >.
) ) ) )  =  ( t  e.  V  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  W ) ) A. z  e.  V  ( -.  z  e.  (
( ( LSpan `  U
) `  { <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. } )  u.  (
( LSpan `  U ) `  { t } ) )  ->  y  =  ( ( (HDMap1 `  K ) `  W
) `  <. z ,  ( ( (HDMap1 `  K ) `  W
) `  <. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. ,  ( ( (HVMap `  K ) `  W
) `  <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >.
) ,  z >.
) ,  t >.
) ) ) )
31, 2fnmpti 5388 . 2  |-  ( t  e.  V  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  W ) ) A. z  e.  V  ( -.  z  e.  (
( ( LSpan `  U
) `  { <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. } )  u.  (
( LSpan `  U ) `  { t } ) )  ->  y  =  ( ( (HDMap1 `  K ) `  W
) `  <. z ,  ( ( (HDMap1 `  K ) `  W
) `  <. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. ,  ( ( (HVMap `  K ) `  W
) `  <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >.
) ,  z >.
) ,  t >.
) ) ) )  Fn  V
4 hdmapfn.h . . . 4  |-  H  =  ( LHyp `  K
)
5 eqid 2296 . . . 4  |-  <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >.  =  <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
6 hdmapfn.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
7 hdmapfn.v . . . 4  |-  V  =  ( Base `  U
)
8 eqid 2296 . . . 4  |-  ( LSpan `  U )  =  (
LSpan `  U )
9 eqid 2296 . . . 4  |-  ( (LCDual `  K ) `  W
)  =  ( (LCDual `  K ) `  W
)
10 eqid 2296 . . . 4  |-  ( Base `  ( (LCDual `  K
) `  W )
)  =  ( Base `  ( (LCDual `  K
) `  W )
)
11 eqid 2296 . . . 4  |-  ( (HVMap `  K ) `  W
)  =  ( (HVMap `  K ) `  W
)
12 eqid 2296 . . . 4  |-  ( (HDMap1 `  K ) `  W
)  =  ( (HDMap1 `  K ) `  W
)
13 hdmapfn.s . . . 4  |-  S  =  ( (HDMap `  K
) `  W )
14 hdmapfn.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
154, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hdmapfval 32642 . . 3  |-  ( ph  ->  S  =  ( t  e.  V  |->  ( iota_ y  e.  ( Base `  (
(LCDual `  K ) `  W ) ) A. z  e.  V  ( -.  z  e.  (
( ( LSpan `  U
) `  { <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. } )  u.  (
( LSpan `  U ) `  { t } ) )  ->  y  =  ( ( (HDMap1 `  K ) `  W
) `  <. z ,  ( ( (HDMap1 `  K ) `  W
) `  <. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. ,  ( ( (HVMap `  K ) `  W
) `  <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >.
) ,  z >.
) ,  t >.
) ) ) ) )
1615fneq1d 5351 . 2  |-  ( ph  ->  ( S  Fn  V  <->  ( t  e.  V  |->  (
iota_ y  e.  ( Base `  ( (LCDual `  K ) `  W
) ) A. z  e.  V  ( -.  z  e.  ( (
( LSpan `  U ) `  { <. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >. } )  u.  (
( LSpan `  U ) `  { t } ) )  ->  y  =  ( ( (HDMap1 `  K ) `  W
) `  <. z ,  ( ( (HDMap1 `  K ) `  W
) `  <. <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >. ,  ( ( (HVMap `  K ) `  W
) `  <. (  _I  |`  ( Base `  K
) ) ,  (  _I  |`  ( ( LTrn `  K ) `  W ) ) >.
) ,  z >.
) ,  t >.
) ) ) )  Fn  V ) )
173, 16mpbiri 224 1  |-  ( ph  ->  S  Fn  V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    u. cun 3163   {csn 3653   <.cop 3656   <.cotp 3657    e. cmpt 4093    _I cid 4320    |` cres 4707    Fn wfn 5266   ` cfv 5271   iota_crio 6313   Basecbs 13164   LSpanclspn 15744   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   DVecHcdvh 31890  LCDualclcd 32398  HVMapchvm 32568  HDMap1chdma1 32604  HDMapchdma 32605
This theorem is referenced by:  hdmaprnlem11N  32675  hdmaprnlem17N  32678  hdmaprnN  32679  hdmapf1oN  32680  hgmaprnlem4N  32714
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-ot 3663  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 6320  df-hdmap 32607
  Copyright terms: Public domain W3C validator