Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem7 Unicode version

Theorem hdmapglem7 31389
Description: Lemma for hdmapg 31390. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our  E,  ( O `  { E } )  X,  Y,  k,  u,  l,  v correspond to Baer's w, H, x, y, x', x'', y' , y'', and our  ( ( S `
 Y ) `  X ) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem7.h  |-  H  =  ( LHyp `  K
)
hdmapglem7.e  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
hdmapglem7.o  |-  O  =  ( ( ocH `  K
) `  W )
hdmapglem7.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmapglem7.v  |-  V  =  ( Base `  U
)
hdmapglem7.p  |-  .+  =  ( +g  `  U )
hdmapglem7.q  |-  .x.  =  ( .s `  U )
hdmapglem7.r  |-  R  =  (Scalar `  U )
hdmapglem7.b  |-  B  =  ( Base `  R
)
hdmapglem7.a  |-  .(+)  =  (
LSSum `  U )
hdmapglem7.n  |-  N  =  ( LSpan `  U )
hdmapglem7.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmapglem7.x  |-  ( ph  ->  X  e.  V )
hdmapglem7.t  |-  .X.  =  ( .r `  R )
hdmapglem7.z  |-  .0.  =  ( 0g `  R )
hdmapglem7.c  |-  .+b  =  ( +g  `  R )
hdmapglem7.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmapglem7.g  |-  G  =  ( (HGMap `  K
) `  W )
hdmapglem7.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
hdmapglem7  |-  ( ph  ->  ( G `  (
( S `  Y
) `  X )
)  =  ( ( S `  X ) `
 Y ) )
Dummy variables  k 
l  u  v are mutually distinct and distinct from all other variables.

Proof of Theorem hdmapglem7
StepHypRef Expression
1 hdmapglem7.h . . 3  |-  H  =  ( LHyp `  K
)
2 hdmapglem7.e . . 3  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
3 hdmapglem7.o . . 3  |-  O  =  ( ( ocH `  K
) `  W )
4 hdmapglem7.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
5 hdmapglem7.v . . 3  |-  V  =  ( Base `  U
)
6 hdmapglem7.p . . 3  |-  .+  =  ( +g  `  U )
7 hdmapglem7.q . . 3  |-  .x.  =  ( .s `  U )
8 hdmapglem7.r . . 3  |-  R  =  (Scalar `  U )
9 hdmapglem7.b . . 3  |-  B  =  ( Base `  R
)
10 hdmapglem7.a . . 3  |-  .(+)  =  (
LSSum `  U )
11 hdmapglem7.n . . 3  |-  N  =  ( LSpan `  U )
12 hdmapglem7.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 hdmapglem7.x . . 3  |-  ( ph  ->  X  e.  V )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13hdmapglem7a 31387 . 2  |-  ( ph  ->  E. u  e.  ( O `  { E } ) E. k  e.  B  X  =  ( ( k  .x.  E )  .+  u
) )
15 hdmapglem7.y . . 3  |-  ( ph  ->  Y  e.  V )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15hdmapglem7a 31387 . 2  |-  ( ph  ->  E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( ( l  .x.  E )  .+  v
) )
17 hdmapglem7.c . . . . . . . . . . . 12  |-  .+b  =  ( +g  `  R )
18 hdmapglem7.g . . . . . . . . . . . 12  |-  G  =  ( (HGMap `  K
) `  W )
1912ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
201, 4, 12dvhlmod 30567 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  LMod )
218lmodrng 15629 . . . . . . . . . . . . . . 15  |-  ( U  e.  LMod  ->  R  e. 
Ring )
2220, 21syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  Ring )
2322ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  R  e.  Ring )
24 simplrr 739 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
k  e.  B )
25 simprr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
l  e.  B )
261, 4, 8, 9, 18, 19, 25hgmapcl 31349 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  l
)  e.  B )
27 hdmapglem7.t . . . . . . . . . . . . . 14  |-  .X.  =  ( .r `  R )
289, 27rngcl 15348 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  k  e.  B  /\  ( G `  l )  e.  B )  ->  (
k  .X.  ( G `  l ) )  e.  B )
2923, 24, 26, 28syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( k  .X.  ( G `  l )
)  e.  B )
30 hdmapglem7.s . . . . . . . . . . . . 13  |-  S  =  ( (HDMap `  K
) `  W )
31 eqid 2284 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  K )  =  (
Base `  K )
32 eqid 2284 . . . . . . . . . . . . . . . . . . 19  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
33 eqid 2284 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  U )  =  ( 0g `  U
)
341, 31, 32, 4, 5, 33, 2, 12dvheveccl 30569 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  E  e.  ( V 
\  { ( 0g
`  U ) } ) )
35 eldifi 3299 . . . . . . . . . . . . . . . . . 18  |-  ( E  e.  ( V  \  { ( 0g `  U ) } )  ->  E  e.  V
)
3634, 35syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  E  e.  V )
3736snssd 3761 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { E }  C_  V )
381, 4, 5, 3dochssv 30812 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  { E }  C_  V )  ->  ( O `  { E } )  C_  V
)
3912, 37, 38syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( O `  { E } )  C_  V
)
4039ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( O `  { E } )  C_  V
)
41 simplrl 738 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  u  e.  ( O `  { E } ) )
4240, 41sseldd 3182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  u  e.  V )
43 simprl 734 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
v  e.  ( O `
 { E }
) )
4440, 43sseldd 3182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
v  e.  V )
451, 4, 5, 8, 9, 30, 19, 42, 44hdmapipcl 31365 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( S `  v ) `  u
)  e.  B )
461, 4, 8, 9, 17, 18, 19, 29, 45hgmapadd 31354 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( k  .X.  ( G `  l )
)  .+b  ( ( S `  v ) `  u ) ) )  =  ( ( G `
 ( k  .X.  ( G `  l ) ) )  .+b  ( G `  ( ( S `  v ) `  u ) ) ) )
471, 4, 8, 9, 27, 18, 19, 24, 26hgmapmul 31355 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
k  .X.  ( G `  l ) ) )  =  ( ( G `
 ( G `  l ) )  .X.  ( G `  k ) ) )
481, 4, 8, 9, 18, 19, 25hgmapvv 31386 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  ( G `  l )
)  =  l )
4948oveq1d 5834 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( G `  ( G `  l ) )  .X.  ( G `  k ) )  =  ( l  .X.  ( G `  k )
) )
5047, 49eqtrd 2316 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
k  .X.  ( G `  l ) ) )  =  ( l  .X.  ( G `  k ) ) )
51 eqid 2284 . . . . . . . . . . . . 13  |-  ( -g `  U )  =  (
-g `  U )
52 hdmapglem7.z . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  R )
531, 2, 3, 4, 5, 6, 51, 7, 8, 9, 27, 52, 30, 18, 19, 41, 43, 24, 24hdmapglem5 31382 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  v
) `  u )
)  =  ( ( S `  u ) `
 v ) )
5450, 53oveq12d 5837 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( G `  ( k  .X.  ( G `  l )
) )  .+b  ( G `  ( ( S `  v ) `  u ) ) )  =  ( ( l 
.X.  ( G `  k ) )  .+b  ( ( S `  u ) `  v
) ) )
5546, 54eqtrd 2316 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( k  .X.  ( G `  l )
)  .+b  ( ( S `  v ) `  u ) ) )  =  ( ( l 
.X.  ( G `  k ) )  .+b  ( ( S `  u ) `  v
) ) )
5613ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  X  e.  V )
571, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 56, 27, 52, 17, 30, 18, 43, 41, 25, 24hdmapglem7b 31388 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( S `  ( ( l  .x.  E )  .+  v
) ) `  (
( k  .x.  E
)  .+  u )
)  =  ( ( k  .X.  ( G `  l ) )  .+b  ( ( S `  v ) `  u
) ) )
5857fveq2d 5489 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( G `  ( ( k  .X.  ( G `  l ) )  .+b  ( ( S `  v ) `  u ) ) ) )
591, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 56, 27, 52, 17, 30, 18, 41, 43, 24, 25hdmapglem7b 31388 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( S `  ( ( k  .x.  E )  .+  u
) ) `  (
( l  .x.  E
)  .+  v )
)  =  ( ( l  .X.  ( G `  k ) )  .+b  ( ( S `  u ) `  v
) ) )
6055, 58, 593eqtr4d 2326 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( ( S `
 ( ( k 
.x.  E )  .+  u ) ) `  ( ( l  .x.  E )  .+  v
) ) )
61603adantl3 1115 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( ( S `
 ( ( k 
.x.  E )  .+  u ) ) `  ( ( l  .x.  E )  .+  v
) ) )
62613adant3 977 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( ( S `
 ( ( k 
.x.  E )  .+  u ) ) `  ( ( l  .x.  E )  .+  v
) ) )
63 simp3 959 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  ->  Y  =  ( (
l  .x.  E )  .+  v ) )
6463fveq2d 5489 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( S `  Y
)  =  ( S `
 ( ( l 
.x.  E )  .+  v ) ) )
65 simp13 989 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  ->  X  =  ( (
k  .x.  E )  .+  u ) )
6664, 65fveq12d 5491 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( ( S `  Y ) `  X
)  =  ( ( S `  ( ( l  .x.  E ) 
.+  v ) ) `
 ( ( k 
.x.  E )  .+  u ) ) )
6766fveq2d 5489 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( G `  (
( S `  Y
) `  X )
)  =  ( G `
 ( ( S `
 ( ( l 
.x.  E )  .+  v ) ) `  ( ( k  .x.  E )  .+  u
) ) ) )
6865fveq2d 5489 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( S `  X
)  =  ( S `
 ( ( k 
.x.  E )  .+  u ) ) )
6968, 63fveq12d 5491 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( ( S `  X ) `  Y
)  =  ( ( S `  ( ( k  .x.  E ) 
.+  u ) ) `
 ( ( l 
.x.  E )  .+  v ) ) )
7062, 67, 693eqtr4d 2326 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( G `  (
( S `  Y
) `  X )
)  =  ( ( S `  X ) `
 Y ) )
71703exp 1152 . . . . 5  |-  ( (
ph  /\  ( u  e.  ( O `  { E } )  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  -> 
( ( v  e.  ( O `  { E } )  /\  l  e.  B )  ->  ( Y  =  ( (
l  .x.  E )  .+  v )  ->  ( G `  ( ( S `  Y ) `  X ) )  =  ( ( S `  X ) `  Y
) ) ) )
7271rexlimdvv 2674 . . . 4  |-  ( (
ph  /\  ( u  e.  ( O `  { E } )  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  -> 
( E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( ( l  .x.  E )  .+  v
)  ->  ( G `  ( ( S `  Y ) `  X
) )  =  ( ( S `  X
) `  Y )
) )
73723exp 1152 . . 3  |-  ( ph  ->  ( ( u  e.  ( O `  { E } )  /\  k  e.  B )  ->  ( X  =  ( (
k  .x.  E )  .+  u )  ->  ( E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( ( l  .x.  E )  .+  v
)  ->  ( G `  ( ( S `  Y ) `  X
) )  =  ( ( S `  X
) `  Y )
) ) ) )
7473rexlimdvv 2674 . 2  |-  ( ph  ->  ( E. u  e.  ( O `  { E } ) E. k  e.  B  X  =  ( ( k  .x.  E )  .+  u
)  ->  ( E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( (
l  .x.  E )  .+  v )  ->  ( G `  ( ( S `  Y ) `  X ) )  =  ( ( S `  X ) `  Y
) ) ) )
7514, 16, 74mp2d 43 1  |-  ( ph  ->  ( G `  (
( S `  Y
) `  X )
)  =  ( ( S `  X ) `
 Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   E.wrex 2545    \ cdif 3150    C_ wss 3153   {csn 3641   <.cop 3644    _I cid 4303    |` cres 4690   ` cfv 5221  (class class class)co 5819   Basecbs 13142   +g cplusg 13202   .rcmulr 13203  Scalarcsca 13205   .scvsca 13206   0gc0g 13394   -gcsg 14359   LSSumclsm 14939   Ringcrg 15331   LModclmod 15621   LSpanclspn 15722   HLchlt 28807   LHypclh 29440   LTrncltrn 29557   DVecHcdvh 30535   ocHcoch 30804  HDMapchdma 31250  HGMapchg 31343
This theorem is referenced by:  hdmapg  31390
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-fal 1313  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-ot 3651  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-tpos 6195  df-iota 6252  df-undef 6291  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-n0 9961  df-z 10020  df-uz 10226  df-fz 10777  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-sca 13218  df-vsca 13219  df-0g 13398  df-mre 13482  df-mrc 13483  df-acs 13485  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-mnd 14361  df-submnd 14410  df-grp 14483  df-minusg 14484  df-sbg 14485  df-subg 14612  df-cntz 14787  df-oppg 14813  df-lsm 14941  df-cmn 15085  df-abl 15086  df-mgp 15320  df-rng 15334  df-ur 15336  df-oppr 15399  df-dvdsr 15417  df-unit 15418  df-invr 15448  df-dvr 15459  df-drng 15508  df-lmod 15623  df-lss 15684  df-lsp 15723  df-lvec 15850  df-lsatoms 28433  df-lshyp 28434  df-lcv 28476  df-lfl 28515  df-lkr 28543  df-ldual 28581  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-llines 28954  df-lplanes 28955  df-lvols 28956  df-lines 28957  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444  df-laut 29445  df-ldil 29560  df-ltrn 29561  df-trl 29615  df-tgrp 30199  df-tendo 30211  df-edring 30213  df-dveca 30459  df-disoa 30486  df-dvech 30536  df-dib 30596  df-dic 30630  df-dih 30686  df-doch 30805  df-djh 30852  df-lcdual 31044  df-mapd 31082  df-hvmap 31214  df-hdmap1 31251  df-hdmap 31252  df-hgmap 31344
  Copyright terms: Public domain W3C validator