Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem7 Unicode version

Theorem hdmapglem7 31289
Description: Lemma for hdmapg 31290. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our  E,  ( O `  { E } )  X,  Y,  k,  u,  l,  v correspond to Baer's w, H, x, y, x', x'', y' , y'', and our  ( ( S `
 Y ) `  X ) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem7.h  |-  H  =  ( LHyp `  K
)
hdmapglem7.e  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
hdmapglem7.o  |-  O  =  ( ( ocH `  K
) `  W )
hdmapglem7.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmapglem7.v  |-  V  =  ( Base `  U
)
hdmapglem7.p  |-  .+  =  ( +g  `  U )
hdmapglem7.q  |-  .x.  =  ( .s `  U )
hdmapglem7.r  |-  R  =  (Scalar `  U )
hdmapglem7.b  |-  B  =  ( Base `  R
)
hdmapglem7.a  |-  .(+)  =  (
LSSum `  U )
hdmapglem7.n  |-  N  =  ( LSpan `  U )
hdmapglem7.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmapglem7.x  |-  ( ph  ->  X  e.  V )
hdmapglem7.t  |-  .X.  =  ( .r `  R )
hdmapglem7.z  |-  .0.  =  ( 0g `  R )
hdmapglem7.c  |-  .+b  =  ( +g  `  R )
hdmapglem7.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmapglem7.g  |-  G  =  ( (HGMap `  K
) `  W )
hdmapglem7.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
hdmapglem7  |-  ( ph  ->  ( G `  (
( S `  Y
) `  X )
)  =  ( ( S `  X ) `
 Y ) )

Proof of Theorem hdmapglem7
StepHypRef Expression
1 hdmapglem7.h . . 3  |-  H  =  ( LHyp `  K
)
2 hdmapglem7.e . . 3  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
3 hdmapglem7.o . . 3  |-  O  =  ( ( ocH `  K
) `  W )
4 hdmapglem7.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
5 hdmapglem7.v . . 3  |-  V  =  ( Base `  U
)
6 hdmapglem7.p . . 3  |-  .+  =  ( +g  `  U )
7 hdmapglem7.q . . 3  |-  .x.  =  ( .s `  U )
8 hdmapglem7.r . . 3  |-  R  =  (Scalar `  U )
9 hdmapglem7.b . . 3  |-  B  =  ( Base `  R
)
10 hdmapglem7.a . . 3  |-  .(+)  =  (
LSSum `  U )
11 hdmapglem7.n . . 3  |-  N  =  ( LSpan `  U )
12 hdmapglem7.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 hdmapglem7.x . . 3  |-  ( ph  ->  X  e.  V )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13hdmapglem7a 31287 . 2  |-  ( ph  ->  E. u  e.  ( O `  { E } ) E. k  e.  B  X  =  ( ( k  .x.  E )  .+  u
) )
15 hdmapglem7.y . . 3  |-  ( ph  ->  Y  e.  V )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15hdmapglem7a 31287 . 2  |-  ( ph  ->  E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( ( l  .x.  E )  .+  v
) )
17 hdmapglem7.c . . . . . . . . . . . 12  |-  .+b  =  ( +g  `  R )
18 hdmapglem7.g . . . . . . . . . . . 12  |-  G  =  ( (HGMap `  K
) `  W )
1912ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
201, 4, 12dvhlmod 30467 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  LMod )
218lmodrng 15597 . . . . . . . . . . . . . . 15  |-  ( U  e.  LMod  ->  R  e. 
Ring )
2220, 21syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  Ring )
2322ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  R  e.  Ring )
24 simplrr 740 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
k  e.  B )
25 simprr 736 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
l  e.  B )
261, 4, 8, 9, 18, 19, 25hgmapcl 31249 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  l
)  e.  B )
27 hdmapglem7.t . . . . . . . . . . . . . 14  |-  .X.  =  ( .r `  R )
289, 27rngcl 15316 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  k  e.  B  /\  ( G `  l )  e.  B )  ->  (
k  .X.  ( G `  l ) )  e.  B )
2923, 24, 26, 28syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( k  .X.  ( G `  l )
)  e.  B )
30 hdmapglem7.s . . . . . . . . . . . . 13  |-  S  =  ( (HDMap `  K
) `  W )
31 eqid 2258 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  K )  =  (
Base `  K )
32 eqid 2258 . . . . . . . . . . . . . . . . . . 19  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
33 eqid 2258 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  U )  =  ( 0g `  U
)
341, 31, 32, 4, 5, 33, 2, 12dvheveccl 30469 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  E  e.  ( V 
\  { ( 0g
`  U ) } ) )
35 eldifi 3273 . . . . . . . . . . . . . . . . . 18  |-  ( E  e.  ( V  \  { ( 0g `  U ) } )  ->  E  e.  V
)
3634, 35syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  E  e.  V )
3736snssd 3734 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { E }  C_  V )
381, 4, 5, 3dochssv 30712 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  { E }  C_  V )  ->  ( O `  { E } )  C_  V
)
3912, 37, 38syl2anc 645 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( O `  { E } )  C_  V
)
4039ad2antrr 709 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( O `  { E } )  C_  V
)
41 simplrl 739 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  u  e.  ( O `  { E } ) )
4240, 41sseldd 3156 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  u  e.  V )
43 simprl 735 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
v  e.  ( O `
 { E }
) )
4440, 43sseldd 3156 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
v  e.  V )
451, 4, 5, 8, 9, 30, 19, 42, 44hdmapipcl 31265 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( S `  v ) `  u
)  e.  B )
461, 4, 8, 9, 17, 18, 19, 29, 45hgmapadd 31254 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( k  .X.  ( G `  l )
)  .+b  ( ( S `  v ) `  u ) ) )  =  ( ( G `
 ( k  .X.  ( G `  l ) ) )  .+b  ( G `  ( ( S `  v ) `  u ) ) ) )
471, 4, 8, 9, 27, 18, 19, 24, 26hgmapmul 31255 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
k  .X.  ( G `  l ) ) )  =  ( ( G `
 ( G `  l ) )  .X.  ( G `  k ) ) )
481, 4, 8, 9, 18, 19, 25hgmapvv 31286 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  ( G `  l )
)  =  l )
4948oveq1d 5807 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( G `  ( G `  l ) )  .X.  ( G `  k ) )  =  ( l  .X.  ( G `  k )
) )
5047, 49eqtrd 2290 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
k  .X.  ( G `  l ) ) )  =  ( l  .X.  ( G `  k ) ) )
51 eqid 2258 . . . . . . . . . . . . 13  |-  ( -g `  U )  =  (
-g `  U )
52 hdmapglem7.z . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  R )
531, 2, 3, 4, 5, 6, 51, 7, 8, 9, 27, 52, 30, 18, 19, 41, 43, 24, 24hdmapglem5 31282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  v
) `  u )
)  =  ( ( S `  u ) `
 v ) )
5450, 53oveq12d 5810 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( G `  ( k  .X.  ( G `  l )
) )  .+b  ( G `  ( ( S `  v ) `  u ) ) )  =  ( ( l 
.X.  ( G `  k ) )  .+b  ( ( S `  u ) `  v
) ) )
5546, 54eqtrd 2290 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( k  .X.  ( G `  l )
)  .+b  ( ( S `  v ) `  u ) ) )  =  ( ( l 
.X.  ( G `  k ) )  .+b  ( ( S `  u ) `  v
) ) )
5613ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  ->  X  e.  V )
571, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 56, 27, 52, 17, 30, 18, 43, 41, 25, 24hdmapglem7b 31288 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( S `  ( ( l  .x.  E )  .+  v
) ) `  (
( k  .x.  E
)  .+  u )
)  =  ( ( k  .X.  ( G `  l ) )  .+b  ( ( S `  v ) `  u
) ) )
5857fveq2d 5462 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( G `  ( ( k  .X.  ( G `  l ) )  .+b  ( ( S `  v ) `  u ) ) ) )
591, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 56, 27, 52, 17, 30, 18, 41, 43, 24, 25hdmapglem7b 31288 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( ( S `  ( ( k  .x.  E )  .+  u
) ) `  (
( l  .x.  E
)  .+  v )
)  =  ( ( l  .X.  ( G `  k ) )  .+b  ( ( S `  u ) `  v
) ) )
6055, 58, 593eqtr4d 2300 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( ( S `
 ( ( k 
.x.  E )  .+  u ) ) `  ( ( l  .x.  E )  .+  v
) ) )
61603adantl3 1118 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( ( S `
 ( ( k 
.x.  E )  .+  u ) ) `  ( ( l  .x.  E )  .+  v
) ) )
62613adant3 980 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( G `  (
( S `  (
( l  .x.  E
)  .+  v )
) `  ( (
k  .x.  E )  .+  u ) ) )  =  ( ( S `
 ( ( k 
.x.  E )  .+  u ) ) `  ( ( l  .x.  E )  .+  v
) ) )
63 simp3 962 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  ->  Y  =  ( (
l  .x.  E )  .+  v ) )
6463fveq2d 5462 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( S `  Y
)  =  ( S `
 ( ( l 
.x.  E )  .+  v ) ) )
65 simp13 992 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  ->  X  =  ( (
k  .x.  E )  .+  u ) )
6664, 65fveq12d 5464 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( ( S `  Y ) `  X
)  =  ( ( S `  ( ( l  .x.  E ) 
.+  v ) ) `
 ( ( k 
.x.  E )  .+  u ) ) )
6766fveq2d 5462 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( G `  (
( S `  Y
) `  X )
)  =  ( G `
 ( ( S `
 ( ( l 
.x.  E )  .+  v ) ) `  ( ( k  .x.  E )  .+  u
) ) ) )
6865fveq2d 5462 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( S `  X
)  =  ( S `
 ( ( k 
.x.  E )  .+  u ) ) )
6968, 63fveq12d 5464 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( ( S `  X ) `  Y
)  =  ( ( S `  ( ( k  .x.  E ) 
.+  u ) ) `
 ( ( l 
.x.  E )  .+  v ) ) )
7062, 67, 693eqtr4d 2300 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( O `
 { E }
)  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  /\  ( v  e.  ( O `  { E } )  /\  l  e.  B )  /\  Y  =  ( ( l 
.x.  E )  .+  v ) )  -> 
( G `  (
( S `  Y
) `  X )
)  =  ( ( S `  X ) `
 Y ) )
71703exp 1155 . . . . 5  |-  ( (
ph  /\  ( u  e.  ( O `  { E } )  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  -> 
( ( v  e.  ( O `  { E } )  /\  l  e.  B )  ->  ( Y  =  ( (
l  .x.  E )  .+  v )  ->  ( G `  ( ( S `  Y ) `  X ) )  =  ( ( S `  X ) `  Y
) ) ) )
7271rexlimdvv 2648 . . . 4  |-  ( (
ph  /\  ( u  e.  ( O `  { E } )  /\  k  e.  B )  /\  X  =  ( ( k 
.x.  E )  .+  u ) )  -> 
( E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( ( l  .x.  E )  .+  v
)  ->  ( G `  ( ( S `  Y ) `  X
) )  =  ( ( S `  X
) `  Y )
) )
73723exp 1155 . . 3  |-  ( ph  ->  ( ( u  e.  ( O `  { E } )  /\  k  e.  B )  ->  ( X  =  ( (
k  .x.  E )  .+  u )  ->  ( E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( ( l  .x.  E )  .+  v
)  ->  ( G `  ( ( S `  Y ) `  X
) )  =  ( ( S `  X
) `  Y )
) ) ) )
7473rexlimdvv 2648 . 2  |-  ( ph  ->  ( E. u  e.  ( O `  { E } ) E. k  e.  B  X  =  ( ( k  .x.  E )  .+  u
)  ->  ( E. v  e.  ( O `  { E } ) E. l  e.  B  Y  =  ( (
l  .x.  E )  .+  v )  ->  ( G `  ( ( S `  Y ) `  X ) )  =  ( ( S `  X ) `  Y
) ) ) )
7514, 16, 74mp2d 43 1  |-  ( ph  ->  ( G `  (
( S `  Y
) `  X )
)  =  ( ( S `  X ) `
 Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   E.wrex 2519    \ cdif 3124    C_ wss 3127   {csn 3614   <.cop 3617    _I cid 4276    |` cres 4663   ` cfv 4673  (class class class)co 5792   Basecbs 13110   +g cplusg 13170   .rcmulr 13171  Scalarcsca 13173   .scvsca 13174   0gc0g 13362   -gcsg 14327   LSSumclsm 14907   Ringcrg 15299   LModclmod 15589   LSpanclspn 15690   HLchlt 28707   LHypclh 29340   LTrncltrn 29457   DVecHcdvh 30435   ocHcoch 30704  HDMapchdma 31150  HGMapchg 31243
This theorem is referenced by:  hdmapg  31290
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-ot 3624  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-tpos 6168  df-iota 6225  df-undef 6264  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-n0 9933  df-z 9992  df-uz 10198  df-fz 10749  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-sca 13186  df-vsca 13187  df-0g 13366  df-mre 13450  df-mrc 13451  df-acs 13453  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-mnd 14329  df-submnd 14378  df-grp 14451  df-minusg 14452  df-sbg 14453  df-subg 14580  df-cntz 14755  df-oppg 14781  df-lsm 14909  df-cmn 15053  df-abl 15054  df-mgp 15288  df-ring 15302  df-ur 15304  df-oppr 15367  df-dvdsr 15385  df-unit 15386  df-invr 15416  df-dvr 15427  df-drng 15476  df-lmod 15591  df-lss 15652  df-lsp 15691  df-lvec 15818  df-lsatoms 28333  df-lshyp 28334  df-lcv 28376  df-lfl 28415  df-lkr 28443  df-ldual 28481  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-llines 28854  df-lplanes 28855  df-lvols 28856  df-lines 28857  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-lhyp 29344  df-laut 29345  df-ldil 29460  df-ltrn 29461  df-trl 29515  df-tgrp 30099  df-tendo 30111  df-edring 30113  df-dveca 30359  df-disoa 30386  df-dvech 30436  df-dib 30496  df-dic 30530  df-dih 30586  df-doch 30705  df-djh 30752  df-lcdual 30944  df-mapd 30982  df-hvmap 31114  df-hdmap1 31151  df-hdmap 31152  df-hgmap 31244
  Copyright terms: Public domain W3C validator