Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapinvlem3 Unicode version

Theorem hdmapinvlem3 31243
Description: Line 30 in [Baer] p. 110, f(sw + u, tw - v) = 0. (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapinvlem3.h  |-  H  =  ( LHyp `  K
)
hdmapinvlem3.e  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
hdmapinvlem3.o  |-  O  =  ( ( ocH `  K
) `  W )
hdmapinvlem3.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmapinvlem3.v  |-  V  =  ( Base `  U
)
hdmapinvlem3.p  |-  .+  =  ( +g  `  U )
hdmapinvlem3.m  |-  .-  =  ( -g `  U )
hdmapinvlem3.q  |-  .x.  =  ( .s `  U )
hdmapinvlem3.r  |-  R  =  (Scalar `  U )
hdmapinvlem3.b  |-  B  =  ( Base `  R
)
hdmapinvlem3.t  |-  .X.  =  ( .r `  R )
hdmapinvlem3.z  |-  .0.  =  ( 0g `  R )
hdmapinvlem3.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmapinvlem3.g  |-  G  =  ( (HGMap `  K
) `  W )
hdmapinvlem3.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmapinvlem3.c  |-  ( ph  ->  C  e.  ( O `
 { E }
) )
hdmapinvlem3.d  |-  ( ph  ->  D  e.  ( O `
 { E }
) )
hdmapinvlem3.i  |-  ( ph  ->  I  e.  B )
hdmapinvlem3.j  |-  ( ph  ->  J  e.  B )
hdmapinvlem3.ij  |-  ( ph  ->  ( I  .X.  ( G `  J )
)  =  ( ( S `  D ) `
 C ) )
Assertion
Ref Expression
hdmapinvlem3  |-  ( ph  ->  ( ( S `  ( ( J  .x.  E )  .-  D
) ) `  (
( I  .x.  E
)  .+  C )
)  =  .0.  )

Proof of Theorem hdmapinvlem3
StepHypRef Expression
1 hdmapinvlem3.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmapinvlem3.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmapinvlem3.v . . . 4  |-  V  =  ( Base `  U
)
4 hdmapinvlem3.m . . . 4  |-  .-  =  ( -g `  U )
5 eqid 2256 . . . 4  |-  ( (LCDual `  K ) `  W
)  =  ( (LCDual `  K ) `  W
)
6 eqid 2256 . . . 4  |-  ( -g `  ( (LCDual `  K
) `  W )
)  =  ( -g `  ( (LCDual `  K
) `  W )
)
7 hdmapinvlem3.s . . . 4  |-  S  =  ( (HDMap `  K
) `  W )
8 hdmapinvlem3.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
91, 2, 8dvhlmod 30430 . . . . 5  |-  ( ph  ->  U  e.  LMod )
10 hdmapinvlem3.j . . . . 5  |-  ( ph  ->  J  e.  B )
11 eqid 2256 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
12 eqid 2256 . . . . . . 7  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
13 eqid 2256 . . . . . . 7  |-  ( 0g
`  U )  =  ( 0g `  U
)
14 hdmapinvlem3.e . . . . . . 7  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
151, 11, 12, 2, 3, 13, 14, 8dvheveccl 30432 . . . . . 6  |-  ( ph  ->  E  e.  ( V 
\  { ( 0g
`  U ) } ) )
16 eldifi 3240 . . . . . 6  |-  ( E  e.  ( V  \  { ( 0g `  U ) } )  ->  E  e.  V
)
1715, 16syl 17 . . . . 5  |-  ( ph  ->  E  e.  V )
18 hdmapinvlem3.r . . . . . 6  |-  R  =  (Scalar `  U )
19 hdmapinvlem3.q . . . . . 6  |-  .x.  =  ( .s `  U )
20 hdmapinvlem3.b . . . . . 6  |-  B  =  ( Base `  R
)
213, 18, 19, 20lmodvscl 15571 . . . . 5  |-  ( ( U  e.  LMod  /\  J  e.  B  /\  E  e.  V )  ->  ( J  .x.  E )  e.  V )
229, 10, 17, 21syl3anc 1187 . . . 4  |-  ( ph  ->  ( J  .x.  E
)  e.  V )
2317snssd 3701 . . . . . 6  |-  ( ph  ->  { E }  C_  V )
24 hdmapinvlem3.o . . . . . . 7  |-  O  =  ( ( ocH `  K
) `  W )
251, 2, 3, 24dochssv 30675 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  { E }  C_  V )  ->  ( O `  { E } )  C_  V
)
268, 23, 25syl2anc 645 . . . . 5  |-  ( ph  ->  ( O `  { E } )  C_  V
)
27 hdmapinvlem3.d . . . . 5  |-  ( ph  ->  D  e.  ( O `
 { E }
) )
2826, 27sseldd 3123 . . . 4  |-  ( ph  ->  D  e.  V )
291, 2, 3, 4, 5, 6, 7, 8, 22, 28hdmapsub 31170 . . 3  |-  ( ph  ->  ( S `  (
( J  .x.  E
)  .-  D )
)  =  ( ( S `  ( J 
.x.  E ) ) ( -g `  (
(LCDual `  K ) `  W ) ) ( S `  D ) ) )
3029fveq1d 5425 . 2  |-  ( ph  ->  ( ( S `  ( ( J  .x.  E )  .-  D
) ) `  (
( I  .x.  E
)  .+  C )
)  =  ( ( ( S `  ( J  .x.  E ) ) ( -g `  (
(LCDual `  K ) `  W ) ) ( S `  D ) ) `  ( ( I  .x.  E ) 
.+  C ) ) )
31 eqid 2256 . . . 4  |-  ( -g `  R )  =  (
-g `  R )
32 eqid 2256 . . . 4  |-  ( Base `  ( (LCDual `  K
) `  W )
)  =  ( Base `  ( (LCDual `  K
) `  W )
)
331, 2, 3, 5, 32, 7, 8, 22hdmapcl 31153 . . . 4  |-  ( ph  ->  ( S `  ( J  .x.  E ) )  e.  ( Base `  (
(LCDual `  K ) `  W ) ) )
341, 2, 3, 5, 32, 7, 8, 28hdmapcl 31153 . . . 4  |-  ( ph  ->  ( S `  D
)  e.  ( Base `  ( (LCDual `  K
) `  W )
) )
35 hdmapinvlem3.i . . . . . 6  |-  ( ph  ->  I  e.  B )
363, 18, 19, 20lmodvscl 15571 . . . . . 6  |-  ( ( U  e.  LMod  /\  I  e.  B  /\  E  e.  V )  ->  (
I  .x.  E )  e.  V )
379, 35, 17, 36syl3anc 1187 . . . . 5  |-  ( ph  ->  ( I  .x.  E
)  e.  V )
38 hdmapinvlem3.c . . . . . 6  |-  ( ph  ->  C  e.  ( O `
 { E }
) )
3926, 38sseldd 3123 . . . . 5  |-  ( ph  ->  C  e.  V )
40 hdmapinvlem3.p . . . . . 6  |-  .+  =  ( +g  `  U )
413, 40lmodvacl 15568 . . . . 5  |-  ( ( U  e.  LMod  /\  (
I  .x.  E )  e.  V  /\  C  e.  V )  ->  (
( I  .x.  E
)  .+  C )  e.  V )
429, 37, 39, 41syl3anc 1187 . . . 4  |-  ( ph  ->  ( ( I  .x.  E )  .+  C
)  e.  V )
431, 2, 3, 18, 31, 5, 32, 6, 8, 33, 34, 42lcdvsubval 30938 . . 3  |-  ( ph  ->  ( ( ( S `
 ( J  .x.  E ) ) (
-g `  ( (LCDual `  K ) `  W
) ) ( S `
 D ) ) `
 ( ( I 
.x.  E )  .+  C ) )  =  ( ( ( S `
 ( J  .x.  E ) ) `  ( ( I  .x.  E )  .+  C
) ) ( -g `  R ) ( ( S `  D ) `
 ( ( I 
.x.  E )  .+  C ) ) ) )
44 eqid 2256 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
451, 2, 3, 40, 18, 44, 7, 8, 37, 39, 22hdmaplna1 31230 . . . . 5  |-  ( ph  ->  ( ( S `  ( J  .x.  E ) ) `  ( ( I  .x.  E ) 
.+  C ) )  =  ( ( ( S `  ( J 
.x.  E ) ) `
 ( I  .x.  E ) ) ( +g  `  R ) ( ( S `  ( J  .x.  E ) ) `  C ) ) )
46 hdmapinvlem3.t . . . . . . . 8  |-  .X.  =  ( .r `  R )
47 hdmapinvlem3.g . . . . . . . 8  |-  G  =  ( (HGMap `  K
) `  W )
481, 2, 3, 19, 18, 20, 46, 7, 47, 8, 37, 17, 10hdmapglnm2 31234 . . . . . . 7  |-  ( ph  ->  ( ( S `  ( J  .x.  E ) ) `  ( I 
.x.  E ) )  =  ( ( ( S `  E ) `
 ( I  .x.  E ) )  .X.  ( G `  J ) ) )
491, 2, 3, 19, 18, 20, 46, 7, 8, 17, 17, 35hdmaplnm1 31232 . . . . . . . . 9  |-  ( ph  ->  ( ( S `  E ) `  (
I  .x.  E )
)  =  ( I 
.X.  ( ( S `
 E ) `  E ) ) )
50 eqid 2256 . . . . . . . . . . 11  |-  ( (HVMap `  K ) `  W
)  =  ( (HVMap `  K ) `  W
)
51 eqid 2256 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
521, 14, 50, 7, 8, 2, 18, 51hdmapevec2 31159 . . . . . . . . . 10  |-  ( ph  ->  ( ( S `  E ) `  E
)  =  ( 1r
`  R ) )
5352oveq2d 5773 . . . . . . . . 9  |-  ( ph  ->  ( I  .X.  (
( S `  E
) `  E )
)  =  ( I 
.X.  ( 1r `  R ) ) )
5418lmodrng 15562 . . . . . . . . . . 11  |-  ( U  e.  LMod  ->  R  e. 
Ring )
559, 54syl 17 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
5620, 46, 51rngridm 15292 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  I  e.  B )  ->  (
I  .X.  ( 1r `  R ) )  =  I )
5755, 35, 56syl2anc 645 . . . . . . . . 9  |-  ( ph  ->  ( I  .X.  ( 1r `  R ) )  =  I )
5849, 53, 573eqtrd 2292 . . . . . . . 8  |-  ( ph  ->  ( ( S `  E ) `  (
I  .x.  E )
)  =  I )
5958oveq1d 5772 . . . . . . 7  |-  ( ph  ->  ( ( ( S `
 E ) `  ( I  .x.  E ) )  .X.  ( G `  J ) )  =  ( I  .X.  ( G `  J )
) )
6048, 59eqtrd 2288 . . . . . 6  |-  ( ph  ->  ( ( S `  ( J  .x.  E ) ) `  ( I 
.x.  E ) )  =  ( I  .X.  ( G `  J ) ) )
611, 2, 3, 19, 18, 20, 46, 7, 47, 8, 39, 17, 10hdmapglnm2 31234 . . . . . . 7  |-  ( ph  ->  ( ( S `  ( J  .x.  E ) ) `  C )  =  ( ( ( S `  E ) `
 C )  .X.  ( G `  J ) ) )
62 hdmapinvlem3.z . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
631, 14, 24, 2, 3, 18, 20, 46, 62, 7, 8, 38hdmapinvlem1 31241 . . . . . . . 8  |-  ( ph  ->  ( ( S `  E ) `  C
)  =  .0.  )
6463oveq1d 5772 . . . . . . 7  |-  ( ph  ->  ( ( ( S `
 E ) `  C )  .X.  ( G `  J )
)  =  (  .0.  .X.  ( G `  J
) ) )
651, 2, 18, 20, 47, 8, 10hgmapcl 31212 . . . . . . . 8  |-  ( ph  ->  ( G `  J
)  e.  B )
6620, 46, 62rnglz 15304 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( G `  J )  e.  B )  ->  (  .0.  .X.  ( G `  J ) )  =  .0.  )
6755, 65, 66syl2anc 645 . . . . . . 7  |-  ( ph  ->  (  .0.  .X.  ( G `  J )
)  =  .0.  )
6861, 64, 673eqtrd 2292 . . . . . 6  |-  ( ph  ->  ( ( S `  ( J  .x.  E ) ) `  C )  =  .0.  )
6960, 68oveq12d 5775 . . . . 5  |-  ( ph  ->  ( ( ( S `
 ( J  .x.  E ) ) `  ( I  .x.  E ) ) ( +g  `  R
) ( ( S `
 ( J  .x.  E ) ) `  C ) )  =  ( ( I  .X.  ( G `  J ) ) ( +g  `  R
)  .0.  ) )
70 rnggrp 15273 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
7155, 70syl 17 . . . . . 6  |-  ( ph  ->  R  e.  Grp )
7218, 20, 46lmodmcl 15566 . . . . . . 7  |-  ( ( U  e.  LMod  /\  I  e.  B  /\  ( G `  J )  e.  B )  ->  (
I  .X.  ( G `  J ) )  e.  B )
739, 35, 65, 72syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( I  .X.  ( G `  J )
)  e.  B )
7420, 44, 62grprid 14440 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( I  .X.  ( G `
 J ) )  e.  B )  -> 
( ( I  .X.  ( G `  J ) ) ( +g  `  R
)  .0.  )  =  ( I  .X.  ( G `  J )
) )
7571, 73, 74syl2anc 645 . . . . 5  |-  ( ph  ->  ( ( I  .X.  ( G `  J ) ) ( +g  `  R
)  .0.  )  =  ( I  .X.  ( G `  J )
) )
7645, 69, 753eqtrd 2292 . . . 4  |-  ( ph  ->  ( ( S `  ( J  .x.  E ) ) `  ( ( I  .x.  E ) 
.+  C ) )  =  ( I  .X.  ( G `  J ) ) )
771, 2, 3, 40, 18, 44, 7, 8, 37, 39, 28hdmaplna1 31230 . . . . 5  |-  ( ph  ->  ( ( S `  D ) `  (
( I  .x.  E
)  .+  C )
)  =  ( ( ( S `  D
) `  ( I  .x.  E ) ) ( +g  `  R ) ( ( S `  D ) `  C
) ) )
781, 2, 3, 19, 18, 20, 46, 7, 8, 17, 28, 35hdmaplnm1 31232 . . . . . . 7  |-  ( ph  ->  ( ( S `  D ) `  (
I  .x.  E )
)  =  ( I 
.X.  ( ( S `
 D ) `  E ) ) )
791, 14, 24, 2, 3, 18, 20, 46, 62, 7, 8, 27hdmapinvlem2 31242 . . . . . . . 8  |-  ( ph  ->  ( ( S `  D ) `  E
)  =  .0.  )
8079oveq2d 5773 . . . . . . 7  |-  ( ph  ->  ( I  .X.  (
( S `  D
) `  E )
)  =  ( I 
.X.  .0.  ) )
8120, 46, 62rngrz 15305 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  I  e.  B )  ->  (
I  .X.  .0.  )  =  .0.  )
8255, 35, 81syl2anc 645 . . . . . . 7  |-  ( ph  ->  ( I  .X.  .0.  )  =  .0.  )
8378, 80, 823eqtrrd 2293 . . . . . 6  |-  ( ph  ->  .0.  =  ( ( S `  D ) `
 ( I  .x.  E ) ) )
84 hdmapinvlem3.ij . . . . . 6  |-  ( ph  ->  ( I  .X.  ( G `  J )
)  =  ( ( S `  D ) `
 C ) )
8583, 84oveq12d 5775 . . . . 5  |-  ( ph  ->  (  .0.  ( +g  `  R ) ( I 
.X.  ( G `  J ) ) )  =  ( ( ( S `  D ) `
 ( I  .x.  E ) ) ( +g  `  R ) ( ( S `  D ) `  C
) ) )
8620, 44, 62grplid 14439 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( I  .X.  ( G `
 J ) )  e.  B )  -> 
(  .0.  ( +g  `  R ) ( I 
.X.  ( G `  J ) ) )  =  ( I  .X.  ( G `  J ) ) )
8771, 73, 86syl2anc 645 . . . . 5  |-  ( ph  ->  (  .0.  ( +g  `  R ) ( I 
.X.  ( G `  J ) ) )  =  ( I  .X.  ( G `  J ) ) )
8877, 85, 873eqtr2d 2294 . . . 4  |-  ( ph  ->  ( ( S `  D ) `  (
( I  .x.  E
)  .+  C )
)  =  ( I 
.X.  ( G `  J ) ) )
8976, 88oveq12d 5775 . . 3  |-  ( ph  ->  ( ( ( S `
 ( J  .x.  E ) ) `  ( ( I  .x.  E )  .+  C
) ) ( -g `  R ) ( ( S `  D ) `
 ( ( I 
.x.  E )  .+  C ) ) )  =  ( ( I 
.X.  ( G `  J ) ) (
-g `  R )
( I  .X.  ( G `  J )
) ) )
9043, 89eqtrd 2288 . 2  |-  ( ph  ->  ( ( ( S `
 ( J  .x.  E ) ) (
-g `  ( (LCDual `  K ) `  W
) ) ( S `
 D ) ) `
 ( ( I 
.x.  E )  .+  C ) )  =  ( ( I  .X.  ( G `  J ) ) ( -g `  R
) ( I  .X.  ( G `  J ) ) ) )
9120, 62, 31grpsubid 14477 . . 3  |-  ( ( R  e.  Grp  /\  ( I  .X.  ( G `
 J ) )  e.  B )  -> 
( ( I  .X.  ( G `  J ) ) ( -g `  R
) ( I  .X.  ( G `  J ) ) )  =  .0.  )
9271, 73, 91syl2anc 645 . 2  |-  ( ph  ->  ( ( I  .X.  ( G `  J ) ) ( -g `  R
) ( I  .X.  ( G `  J ) ) )  =  .0.  )
9330, 90, 923eqtrd 2292 1  |-  ( ph  ->  ( ( S `  ( ( J  .x.  E )  .-  D
) ) `  (
( I  .x.  E
)  .+  C )
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    \ cdif 3091    C_ wss 3094   {csn 3581   <.cop 3584    _I cid 4241    |` cres 4628   ` cfv 4638  (class class class)co 5757   Basecbs 13075   +g cplusg 13135   .rcmulr 13136  Scalarcsca 13138   .scvsca 13139   0gc0g 13327   Grpcgrp 14289   -gcsg 14292   Ringcrg 15264   1rcur 15266   LModclmod 15554   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   DVecHcdvh 30398   ocHcoch 30667  LCDualclcd 30906  HVMapchvm 31076  HDMapchdma 31113  HGMapchg 31206
This theorem is referenced by:  hdmapinvlem4  31244
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-ot 3591  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-tpos 6133  df-iota 6190  df-undef 6229  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-n0 9898  df-z 9957  df-uz 10163  df-fz 10714  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-sca 13151  df-vsca 13152  df-0g 13331  df-mre 13415  df-mrc 13416  df-acs 13418  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-mnd 14294  df-submnd 14343  df-grp 14416  df-minusg 14417  df-sbg 14418  df-subg 14545  df-cntz 14720  df-oppg 14746  df-lsm 14874  df-cmn 15018  df-abl 15019  df-mgp 15253  df-ring 15267  df-ur 15269  df-oppr 15332  df-dvdsr 15350  df-unit 15351  df-invr 15381  df-dvr 15392  df-drng 15441  df-lmod 15556  df-lss 15617  df-lsp 15656  df-lvec 15783  df-lsatoms 28296  df-lshyp 28297  df-lcv 28339  df-lfl 28378  df-lkr 28406  df-ldual 28444  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478  df-tgrp 30062  df-tendo 30074  df-edring 30076  df-dveca 30322  df-disoa 30349  df-dvech 30399  df-dib 30459  df-dic 30493  df-dih 30549  df-doch 30668  df-djh 30715  df-lcdual 30907  df-mapd 30945  df-hvmap 31077  df-hdmap1 31114  df-hdmap 31115  df-hgmap 31207
  Copyright terms: Public domain W3C validator