Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapadd Unicode version

Theorem hgmapadd 30776
Description: Part 15 of [Baer] p. 50 line 13. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hgmapadd.h  |-  H  =  ( LHyp `  K
)
hgmapadd.u  |-  U  =  ( ( DVecH `  K
) `  W )
hgmapadd.r  |-  R  =  (Scalar `  U )
hgmapadd.b  |-  B  =  ( Base `  R
)
hgmapadd.p  |-  .+  =  ( +g  `  R )
hgmapadd.g  |-  G  =  ( (HGMap `  K
) `  W )
hgmapadd.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hgmapadd.x  |-  ( ph  ->  X  e.  B )
hgmapadd.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
hgmapadd  |-  ( ph  ->  ( G `  ( X  .+  Y ) )  =  ( ( G `
 X )  .+  ( G `  Y ) ) )

Proof of Theorem hgmapadd
StepHypRef Expression
1 hgmapadd.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hgmapadd.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 eqid 2253 . . . 4  |-  ( Base `  U )  =  (
Base `  U )
4 eqid 2253 . . . 4  |-  ( 0g
`  U )  =  ( 0g `  U
)
5 hgmapadd.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
61, 2, 3, 4, 5dvh1dim 30321 . . 3  |-  ( ph  ->  E. t  e.  (
Base `  U )
t  =/=  ( 0g
`  U ) )
7 eqid 2253 . . . . . . . . 9  |-  ( (LCDual `  K ) `  W
)  =  ( (LCDual `  K ) `  W
)
81, 7, 5lcdlmod 30471 . . . . . . . 8  |-  ( ph  ->  ( (LCDual `  K
) `  W )  e.  LMod )
983ad2ant1 981 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( (LCDual `  K ) `  W
)  e.  LMod )
10 hgmapadd.r . . . . . . . 8  |-  R  =  (Scalar `  U )
11 hgmapadd.b . . . . . . . 8  |-  B  =  ( Base `  R
)
12 eqid 2253 . . . . . . . 8  |-  (Scalar `  ( (LCDual `  K ) `  W ) )  =  (Scalar `  ( (LCDual `  K ) `  W
) )
13 eqid 2253 . . . . . . . 8  |-  ( Base `  (Scalar `  ( (LCDual `  K ) `  W
) ) )  =  ( Base `  (Scalar `  ( (LCDual `  K
) `  W )
) )
14 hgmapadd.g . . . . . . . 8  |-  G  =  ( (HGMap `  K
) `  W )
1553ad2ant1 981 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
16 hgmapadd.x . . . . . . . . 9  |-  ( ph  ->  X  e.  B )
17163ad2ant1 981 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  X  e.  B
)
181, 2, 10, 11, 7, 12, 13, 14, 15, 17hgmapdcl 30772 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( G `  X )  e.  (
Base `  (Scalar `  (
(LCDual `  K ) `  W ) ) ) )
19 hgmapadd.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  B )
201, 2, 10, 11, 7, 12, 13, 14, 5, 19hgmapdcl 30772 . . . . . . . 8  |-  ( ph  ->  ( G `  Y
)  e.  ( Base `  (Scalar `  ( (LCDual `  K ) `  W
) ) ) )
21203ad2ant1 981 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( G `  Y )  e.  (
Base `  (Scalar `  (
(LCDual `  K ) `  W ) ) ) )
22 eqid 2253 . . . . . . . 8  |-  ( Base `  ( (LCDual `  K
) `  W )
)  =  ( Base `  ( (LCDual `  K
) `  W )
)
23 eqid 2253 . . . . . . . 8  |-  ( (HDMap `  K ) `  W
)  =  ( (HDMap `  K ) `  W
)
24 simp2 961 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  t  e.  (
Base `  U )
)
251, 2, 3, 7, 22, 23, 15, 24hdmapcl 30712 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( (HDMap `  K ) `  W
) `  t )  e.  ( Base `  (
(LCDual `  K ) `  W ) ) )
26 eqid 2253 . . . . . . . 8  |-  ( +g  `  ( (LCDual `  K
) `  W )
)  =  ( +g  `  ( (LCDual `  K
) `  W )
)
27 eqid 2253 . . . . . . . 8  |-  ( .s
`  ( (LCDual `  K ) `  W
) )  =  ( .s `  ( (LCDual `  K ) `  W
) )
28 eqid 2253 . . . . . . . 8  |-  ( +g  `  (Scalar `  ( (LCDual `  K ) `  W
) ) )  =  ( +g  `  (Scalar `  ( (LCDual `  K
) `  W )
) )
2922, 26, 12, 27, 13, 28lmodvsdir 15487 . . . . . . 7  |-  ( ( ( (LCDual `  K
) `  W )  e.  LMod  /\  ( ( G `  X )  e.  ( Base `  (Scalar `  ( (LCDual `  K
) `  W )
) )  /\  ( G `  Y )  e.  ( Base `  (Scalar `  ( (LCDual `  K
) `  W )
) )  /\  (
( (HDMap `  K
) `  W ) `  t )  e.  (
Base `  ( (LCDual `  K ) `  W
) ) ) )  ->  ( ( ( G `  X ) ( +g  `  (Scalar `  ( (LCDual `  K
) `  W )
) ) ( G `
 Y ) ) ( .s `  (
(LCDual `  K ) `  W ) ) ( ( (HDMap `  K
) `  W ) `  t ) )  =  ( ( ( G `
 X ) ( .s `  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) ) ( +g  `  ( (LCDual `  K
) `  W )
) ( ( G `
 Y ) ( .s `  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) ) ) )
309, 18, 21, 25, 29syl13anc 1189 . . . . . 6  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( ( G `  X ) ( +g  `  (Scalar `  ( (LCDual `  K
) `  W )
) ) ( G `
 Y ) ) ( .s `  (
(LCDual `  K ) `  W ) ) ( ( (HDMap `  K
) `  W ) `  t ) )  =  ( ( ( G `
 X ) ( .s `  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) ) ( +g  `  ( (LCDual `  K
) `  W )
) ( ( G `
 Y ) ( .s `  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) ) ) )
311, 2, 5dvhlmod 29989 . . . . . . . . . 10  |-  ( ph  ->  U  e.  LMod )
32313ad2ant1 981 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  U  e.  LMod )
33193ad2ant1 981 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  Y  e.  B
)
34 eqid 2253 . . . . . . . . . 10  |-  ( +g  `  U )  =  ( +g  `  U )
35 eqid 2253 . . . . . . . . . 10  |-  ( .s
`  U )  =  ( .s `  U
)
36 hgmapadd.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
373, 34, 10, 35, 11, 36lmodvsdir 15487 . . . . . . . . 9  |-  ( ( U  e.  LMod  /\  ( X  e.  B  /\  Y  e.  B  /\  t  e.  ( Base `  U ) ) )  ->  ( ( X 
.+  Y ) ( .s `  U ) t )  =  ( ( X ( .s
`  U ) t ) ( +g  `  U
) ( Y ( .s `  U ) t ) ) )
3832, 17, 33, 24, 37syl13anc 1189 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( X 
.+  Y ) ( .s `  U ) t )  =  ( ( X ( .s
`  U ) t ) ( +g  `  U
) ( Y ( .s `  U ) t ) ) )
3938fveq2d 5381 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( (HDMap `  K ) `  W
) `  ( ( X  .+  Y ) ( .s `  U ) t ) )  =  ( ( (HDMap `  K ) `  W
) `  ( ( X ( .s `  U ) t ) ( +g  `  U
) ( Y ( .s `  U ) t ) ) ) )
403, 10, 35, 11lmodvscl 15479 . . . . . . . . 9  |-  ( ( U  e.  LMod  /\  X  e.  B  /\  t  e.  ( Base `  U
) )  ->  ( X ( .s `  U ) t )  e.  ( Base `  U
) )
4132, 17, 24, 40syl3anc 1187 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( X ( .s `  U ) t )  e.  (
Base `  U )
)
423, 10, 35, 11lmodvscl 15479 . . . . . . . . 9  |-  ( ( U  e.  LMod  /\  Y  e.  B  /\  t  e.  ( Base `  U
) )  ->  ( Y ( .s `  U ) t )  e.  ( Base `  U
) )
4332, 33, 24, 42syl3anc 1187 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( Y ( .s `  U ) t )  e.  (
Base `  U )
)
441, 2, 3, 34, 7, 26, 23, 15, 41, 43hdmapadd 30725 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( (HDMap `  K ) `  W
) `  ( ( X ( .s `  U ) t ) ( +g  `  U
) ( Y ( .s `  U ) t ) ) )  =  ( ( ( (HDMap `  K ) `  W ) `  ( X ( .s `  U ) t ) ) ( +g  `  (
(LCDual `  K ) `  W ) ) ( ( (HDMap `  K
) `  W ) `  ( Y ( .s
`  U ) t ) ) ) )
451, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 17hgmapvs 30773 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( (HDMap `  K ) `  W
) `  ( X
( .s `  U
) t ) )  =  ( ( G `
 X ) ( .s `  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) ) )
461, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 33hgmapvs 30773 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( (HDMap `  K ) `  W
) `  ( Y
( .s `  U
) t ) )  =  ( ( G `
 Y ) ( .s `  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) ) )
4745, 46oveq12d 5728 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( ( (HDMap `  K ) `  W ) `  ( X ( .s `  U ) t ) ) ( +g  `  (
(LCDual `  K ) `  W ) ) ( ( (HDMap `  K
) `  W ) `  ( Y ( .s
`  U ) t ) ) )  =  ( ( ( G `
 X ) ( .s `  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) ) ( +g  `  ( (LCDual `  K
) `  W )
) ( ( G `
 Y ) ( .s `  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) ) ) )
4839, 44, 473eqtrrd 2290 . . . . . 6  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( ( G `  X ) ( .s `  (
(LCDual `  K ) `  W ) ) ( ( (HDMap `  K
) `  W ) `  t ) ) ( +g  `  ( (LCDual `  K ) `  W
) ) ( ( G `  Y ) ( .s `  (
(LCDual `  K ) `  W ) ) ( ( (HDMap `  K
) `  W ) `  t ) ) )  =  ( ( (HDMap `  K ) `  W
) `  ( ( X  .+  Y ) ( .s `  U ) t ) ) )
4910, 11, 36lmodacl 15473 . . . . . . . . 9  |-  ( ( U  e.  LMod  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
5031, 16, 19, 49syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( X  .+  Y
)  e.  B )
51503ad2ant1 981 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( X  .+  Y )  e.  B
)
521, 2, 3, 35, 10, 11, 7, 27, 23, 14, 15, 24, 51hgmapvs 30773 . . . . . 6  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( (HDMap `  K ) `  W
) `  ( ( X  .+  Y ) ( .s `  U ) t ) )  =  ( ( G `  ( X  .+  Y ) ) ( .s `  ( (LCDual `  K ) `  W ) ) ( ( (HDMap `  K
) `  W ) `  t ) ) )
5330, 48, 523eqtrrd 2290 . . . . 5  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( G `
 ( X  .+  Y ) ) ( .s `  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) )  =  ( ( ( G `  X ) ( +g  `  (Scalar `  ( (LCDual `  K ) `  W
) ) ) ( G `  Y ) ) ( .s `  ( (LCDual `  K ) `  W ) ) ( ( (HDMap `  K
) `  W ) `  t ) ) )
54 eqid 2253 . . . . . 6  |-  ( 0g
`  ( (LCDual `  K ) `  W
) )  =  ( 0g `  ( (LCDual `  K ) `  W
) )
551, 7, 5lcdlvec 30470 . . . . . . 7  |-  ( ph  ->  ( (LCDual `  K
) `  W )  e.  LVec )
56553ad2ant1 981 . . . . . 6  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( (LCDual `  K ) `  W
)  e.  LVec )
571, 2, 10, 11, 7, 12, 13, 14, 5, 50hgmapdcl 30772 . . . . . . 7  |-  ( ph  ->  ( G `  ( X  .+  Y ) )  e.  ( Base `  (Scalar `  ( (LCDual `  K
) `  W )
) ) )
58573ad2ant1 981 . . . . . 6  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( G `  ( X  .+  Y ) )  e.  ( Base `  (Scalar `  ( (LCDual `  K ) `  W
) ) ) )
591, 2, 10, 11, 7, 12, 13, 14, 5, 16hgmapdcl 30772 . . . . . . . 8  |-  ( ph  ->  ( G `  X
)  e.  ( Base `  (Scalar `  ( (LCDual `  K ) `  W
) ) ) )
6012, 13, 28lmodacl 15473 . . . . . . . 8  |-  ( ( ( (LCDual `  K
) `  W )  e.  LMod  /\  ( G `  X )  e.  (
Base `  (Scalar `  (
(LCDual `  K ) `  W ) ) )  /\  ( G `  Y )  e.  (
Base `  (Scalar `  (
(LCDual `  K ) `  W ) ) ) )  ->  ( ( G `  X )
( +g  `  (Scalar `  ( (LCDual `  K ) `  W ) ) ) ( G `  Y
) )  e.  (
Base `  (Scalar `  (
(LCDual `  K ) `  W ) ) ) )
618, 59, 20, 60syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( ( G `  X ) ( +g  `  (Scalar `  ( (LCDual `  K ) `  W
) ) ) ( G `  Y ) )  e.  ( Base `  (Scalar `  ( (LCDual `  K ) `  W
) ) ) )
62613ad2ant1 981 . . . . . 6  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( G `
 X ) ( +g  `  (Scalar `  ( (LCDual `  K ) `  W ) ) ) ( G `  Y
) )  e.  (
Base `  (Scalar `  (
(LCDual `  K ) `  W ) ) ) )
63 simp3 962 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  t  =/=  ( 0g `  U ) )
641, 2, 3, 4, 7, 54, 23, 15, 24hdmapeq0 30726 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( ( (HDMap `  K ) `  W ) `  t
)  =  ( 0g
`  ( (LCDual `  K ) `  W
) )  <->  t  =  ( 0g `  U ) ) )
6564necon3bid 2447 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( ( (HDMap `  K ) `  W ) `  t
)  =/=  ( 0g
`  ( (LCDual `  K ) `  W
) )  <->  t  =/=  ( 0g `  U ) ) )
6663, 65mpbird 225 . . . . . 6  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( (HDMap `  K ) `  W
) `  t )  =/=  ( 0g `  (
(LCDual `  K ) `  W ) ) )
6722, 27, 12, 13, 54, 56, 58, 62, 25, 66lvecvscan2 15700 . . . . 5  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( ( ( G `  ( X 
.+  Y ) ) ( .s `  (
(LCDual `  K ) `  W ) ) ( ( (HDMap `  K
) `  W ) `  t ) )  =  ( ( ( G `
 X ) ( +g  `  (Scalar `  ( (LCDual `  K ) `  W ) ) ) ( G `  Y
) ) ( .s
`  ( (LCDual `  K ) `  W
) ) ( ( (HDMap `  K ) `  W ) `  t
) )  <->  ( G `  ( X  .+  Y
) )  =  ( ( G `  X
) ( +g  `  (Scalar `  ( (LCDual `  K
) `  W )
) ) ( G `
 Y ) ) ) )
6853, 67mpbid 203 . . . 4  |-  ( (
ph  /\  t  e.  ( Base `  U )  /\  t  =/=  ( 0g `  U ) )  ->  ( G `  ( X  .+  Y ) )  =  ( ( G `  X ) ( +g  `  (Scalar `  ( (LCDual `  K
) `  W )
) ) ( G `
 Y ) ) )
6968rexlimdv3a 2631 . . 3  |-  ( ph  ->  ( E. t  e.  ( Base `  U
) t  =/=  ( 0g `  U )  -> 
( G `  ( X  .+  Y ) )  =  ( ( G `
 X ) ( +g  `  (Scalar `  ( (LCDual `  K ) `  W ) ) ) ( G `  Y
) ) ) )
706, 69mpd 16 . 2  |-  ( ph  ->  ( G `  ( X  .+  Y ) )  =  ( ( G `
 X ) ( +g  `  (Scalar `  ( (LCDual `  K ) `  W ) ) ) ( G `  Y
) ) )
711, 2, 10, 36, 7, 12, 28, 5lcdsadd 30480 . . 3  |-  ( ph  ->  ( +g  `  (Scalar `  ( (LCDual `  K
) `  W )
) )  =  .+  )
7271oveqd 5727 . 2  |-  ( ph  ->  ( ( G `  X ) ( +g  `  (Scalar `  ( (LCDual `  K ) `  W
) ) ) ( G `  Y ) )  =  ( ( G `  X ) 
.+  ( G `  Y ) ) )
7370, 72eqtrd 2285 1  |-  ( ph  ->  ( G `  ( X  .+  Y ) )  =  ( ( G `
 X )  .+  ( G `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   ` cfv 4592  (class class class)co 5710   Basecbs 13022   +g cplusg 13082  Scalarcsca 13085   .scvsca 13086   0gc0g 13274   LModclmod 15462   LVecclvec 15690   HLchlt 28229   LHypclh 28862   DVecHcdvh 29957  LCDualclcd 30465  HDMapchdma 30672  HGMapchg 30765
This theorem is referenced by:  hdmapglem7  30811  hlhilsrnglem  30835
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-ot 3554  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-tpos 6086  df-iota 6143  df-undef 6182  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-n0 9845  df-z 9904  df-uz 10110  df-fz 10661  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-sca 13098  df-vsca 13099  df-0g 13278  df-mre 13361  df-mrc 13362  df-acs 13363  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-mnd 14202  df-submnd 14251  df-grp 14324  df-minusg 14325  df-sbg 14326  df-subg 14453  df-cntz 14628  df-oppg 14654  df-lsm 14782  df-cmn 14926  df-abl 14927  df-mgp 15161  df-ring 15175  df-ur 15177  df-oppr 15240  df-dvdsr 15258  df-unit 15259  df-invr 15289  df-dvr 15300  df-drng 15349  df-lmod 15464  df-lss 15525  df-lsp 15564  df-lvec 15691  df-lsatoms 27855  df-lshyp 27856  df-lcv 27898  df-lfl 27937  df-lkr 27965  df-ldual 28003  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lplanes 28377  df-lvols 28378  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037  df-tgrp 29621  df-tendo 29633  df-edring 29635  df-dveca 29881  df-disoa 29908  df-dvech 29958  df-dib 30018  df-dic 30052  df-dih 30108  df-doch 30227  df-djh 30274  df-lcdual 30466  df-mapd 30504  df-hvmap 30636  df-hdmap1 30673  df-hdmap 30674  df-hgmap 30766
  Copyright terms: Public domain W3C validator