Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapval Unicode version

Theorem hgmapval 31247
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 31242. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h  |-  H  =  ( LHyp `  K
)
hgmapfval.u  |-  U  =  ( ( DVecH `  K
) `  W )
hgmapfval.v  |-  V  =  ( Base `  U
)
hgmapfval.t  |-  .x.  =  ( .s `  U )
hgmapfval.r  |-  R  =  (Scalar `  U )
hgmapfval.b  |-  B  =  ( Base `  R
)
hgmapfval.c  |-  C  =  ( (LCDual `  K
) `  W )
hgmapfval.s  |-  .xb  =  ( .s `  C )
hgmapfval.m  |-  M  =  ( (HDMap `  K
) `  W )
hgmapfval.i  |-  I  =  ( (HGMap `  K
) `  W )
hgmapfval.k  |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H
) )
hgmapval.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
hgmapval  |-  ( ph  ->  ( I `  X
)  =  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
Distinct variable groups:    y, v, K    v, B, y    v, M, y    v, U, y   
v, V    v, W, y    v, X, y
Allowed substitution hints:    ph( y, v)    C( y, v)    R( y, v)    .xb ( y, v)    .x. ( y,
v)    H( y, v)    I(
y, v)    V( y)    Y( y, v)

Proof of Theorem hgmapval
StepHypRef Expression
1 hgmapval.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hgmapfval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hgmapfval.v . . . 4  |-  V  =  ( Base `  U
)
4 hgmapfval.t . . . 4  |-  .x.  =  ( .s `  U )
5 hgmapfval.r . . . 4  |-  R  =  (Scalar `  U )
6 hgmapfval.b . . . 4  |-  B  =  ( Base `  R
)
7 hgmapfval.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
8 hgmapfval.s . . . 4  |-  .xb  =  ( .s `  C )
9 hgmapfval.m . . . 4  |-  M  =  ( (HDMap `  K
) `  W )
10 hgmapfval.i . . . 4  |-  I  =  ( (HGMap `  K
) `  W )
11 hgmapfval.k . . . 4  |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H
) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hgmapfval 31246 . . 3  |-  ( ph  ->  I  =  ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) ) )
1312fveq1d 5460 . 2  |-  ( ph  ->  ( I `  X
)  =  ( ( x  e.  B  |->  (
iota_ y  e.  B A. v  e.  V  ( M `  ( x 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) ) `  X ) )
14 hgmapval.x . . 3  |-  ( ph  ->  X  e.  B )
15 riotaex 6276 . . 3  |-  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) )  e.  _V
16 oveq1 5799 . . . . . . . 8  |-  ( x  =  X  ->  (
x  .x.  v )  =  ( X  .x.  v ) )
1716fveq2d 5462 . . . . . . 7  |-  ( x  =  X  ->  ( M `  ( x  .x.  v ) )  =  ( M `  ( X  .x.  v ) ) )
1817eqeq1d 2266 . . . . . 6  |-  ( x  =  X  ->  (
( M `  (
x  .x.  v )
)  =  ( y 
.xb  ( M `  v ) )  <->  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
1918ralbidv 2538 . . . . 5  |-  ( x  =  X  ->  ( A. v  e.  V  ( M `  ( x 
.x.  v ) )  =  ( y  .xb  ( M `  v ) )  <->  A. v  e.  V  ( M `  ( X 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) )
2019riotabidv 6274 . . . 4  |-  ( x  =  X  ->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v ) )  =  ( y  .xb  ( M `  v )
) )  =  (
iota_ y  e.  B A. v  e.  V  ( M `  ( X 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) )
21 eqid 2258 . . . 4  |-  ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )  =  ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
2220, 21fvmptg 5534 . . 3  |-  ( ( X  e.  B  /\  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) )  e.  _V )  ->  ( ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) ) `  X )  =  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v ) )  =  ( y 
.xb  ( M `  v ) ) ) )
2314, 15, 22sylancl 646 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v ) )  =  ( y 
.xb  ( M `  v ) ) ) ) `  X )  =  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v ) )  =  ( y 
.xb  ( M `  v ) ) ) )
2413, 23eqtrd 2290 1  |-  ( ph  ->  ( I `  X
)  =  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   _Vcvv 2763    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   iota_crio 6263   Basecbs 13110  Scalarcsca 13173   .scvsca 13174   LHypclh 29340   DVecHcdvh 30435  LCDualclcd 30943  HDMapchdma 31150  HGMapchg 31243
This theorem is referenced by:  hgmapcl  31249  hgmapvs  31251
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-iota 6225  df-riota 6272  df-hgmap 31244
  Copyright terms: Public domain W3C validator