Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapval Unicode version

Theorem hgmapval 32080
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 32075. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h  |-  H  =  ( LHyp `  K
)
hgmapfval.u  |-  U  =  ( ( DVecH `  K
) `  W )
hgmapfval.v  |-  V  =  ( Base `  U
)
hgmapfval.t  |-  .x.  =  ( .s `  U )
hgmapfval.r  |-  R  =  (Scalar `  U )
hgmapfval.b  |-  B  =  ( Base `  R
)
hgmapfval.c  |-  C  =  ( (LCDual `  K
) `  W )
hgmapfval.s  |-  .xb  =  ( .s `  C )
hgmapfval.m  |-  M  =  ( (HDMap `  K
) `  W )
hgmapfval.i  |-  I  =  ( (HGMap `  K
) `  W )
hgmapfval.k  |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H
) )
hgmapval.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
hgmapval  |-  ( ph  ->  ( I `  X
)  =  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
Distinct variable groups:    y, v, K    v, B, y    v, M, y    v, U, y   
v, V    v, W, y    v, X, y
Allowed substitution hints:    ph( y, v)    C( y, v)    R( y, v)    .xb ( y, v)    .x. ( y,
v)    H( y, v)    I(
y, v)    V( y)    Y( y, v)

Proof of Theorem hgmapval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hgmapval.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hgmapfval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hgmapfval.v . . . 4  |-  V  =  ( Base `  U
)
4 hgmapfval.t . . . 4  |-  .x.  =  ( .s `  U )
5 hgmapfval.r . . . 4  |-  R  =  (Scalar `  U )
6 hgmapfval.b . . . 4  |-  B  =  ( Base `  R
)
7 hgmapfval.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
8 hgmapfval.s . . . 4  |-  .xb  =  ( .s `  C )
9 hgmapfval.m . . . 4  |-  M  =  ( (HDMap `  K
) `  W )
10 hgmapfval.i . . . 4  |-  I  =  ( (HGMap `  K
) `  W )
11 hgmapfval.k . . . 4  |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H
) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hgmapfval 32079 . . 3  |-  ( ph  ->  I  =  ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) ) )
1312fveq1d 5527 . 2  |-  ( ph  ->  ( I `  X
)  =  ( ( x  e.  B  |->  (
iota_ y  e.  B A. v  e.  V  ( M `  ( x 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) ) `  X ) )
14 hgmapval.x . . 3  |-  ( ph  ->  X  e.  B )
15 riotaex 6308 . . 3  |-  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) )  e.  _V
16 oveq1 5865 . . . . . . . 8  |-  ( x  =  X  ->  (
x  .x.  v )  =  ( X  .x.  v ) )
1716fveq2d 5529 . . . . . . 7  |-  ( x  =  X  ->  ( M `  ( x  .x.  v ) )  =  ( M `  ( X  .x.  v ) ) )
1817eqeq1d 2291 . . . . . 6  |-  ( x  =  X  ->  (
( M `  (
x  .x.  v )
)  =  ( y 
.xb  ( M `  v ) )  <->  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
1918ralbidv 2563 . . . . 5  |-  ( x  =  X  ->  ( A. v  e.  V  ( M `  ( x 
.x.  v ) )  =  ( y  .xb  ( M `  v ) )  <->  A. v  e.  V  ( M `  ( X 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) )
2019riotabidv 6306 . . . 4  |-  ( x  =  X  ->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v ) )  =  ( y  .xb  ( M `  v )
) )  =  (
iota_ y  e.  B A. v  e.  V  ( M `  ( X 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) )
21 eqid 2283 . . . 4  |-  ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )  =  ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
2220, 21fvmptg 5600 . . 3  |-  ( ( X  e.  B  /\  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) )  e.  _V )  ->  ( ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) ) `  X )  =  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v ) )  =  ( y 
.xb  ( M `  v ) ) ) )
2314, 15, 22sylancl 643 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  ( iota_ y  e.  B A. v  e.  V  ( M `  ( x  .x.  v ) )  =  ( y 
.xb  ( M `  v ) ) ) ) `  X )  =  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v ) )  =  ( y 
.xb  ( M `  v ) ) ) )
2413, 23eqtrd 2315 1  |-  ( ph  ->  ( I `  X
)  =  ( iota_ y  e.  B A. v  e.  V  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   iota_crio 6297   Basecbs 13148  Scalarcsca 13211   .scvsca 13212   LHypclh 30173   DVecHcdvh 31268  LCDualclcd 31776  HDMapchdma 31983  HGMapchg 32076
This theorem is referenced by:  hgmapcl  32082  hgmapvs  32084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-riota 6304  df-hgmap 32077
  Copyright terms: Public domain W3C validator