Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapvs Unicode version

Theorem hgmapvs 32706
Description: Part 15 of [Baer] p. 50 line 6. Also line 15 in [Holland95] p. 14. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hgmapvs.h  |-  H  =  ( LHyp `  K
)
hgmapvs.u  |-  U  =  ( ( DVecH `  K
) `  W )
hgmapvs.v  |-  V  =  ( Base `  U
)
hgmapvs.t  |-  .x.  =  ( .s `  U )
hgmapvs.r  |-  R  =  (Scalar `  U )
hgmapvs.b  |-  B  =  ( Base `  R
)
hgmapvs.c  |-  C  =  ( (LCDual `  K
) `  W )
hgmapvs.e  |-  .xb  =  ( .s `  C )
hgmapvs.s  |-  S  =  ( (HDMap `  K
) `  W )
hgmapvs.g  |-  G  =  ( (HGMap `  K
) `  W )
hgmapvs.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hgmapvs.x  |-  ( ph  ->  X  e.  V )
hgmapvs.f  |-  ( ph  ->  F  e.  B )
Assertion
Ref Expression
hgmapvs  |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( ( G `
 F )  .xb  ( S `  X ) ) )

Proof of Theorem hgmapvs
Dummy variables  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgmapvs.x . 2  |-  ( ph  ->  X  e.  V )
2 hgmapvs.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 hgmapvs.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
4 hgmapvs.v . . . . 5  |-  V  =  ( Base `  U
)
5 hgmapvs.t . . . . 5  |-  .x.  =  ( .s `  U )
6 hgmapvs.r . . . . 5  |-  R  =  (Scalar `  U )
7 hgmapvs.b . . . . 5  |-  B  =  ( Base `  R
)
8 hgmapvs.c . . . . 5  |-  C  =  ( (LCDual `  K
) `  W )
9 hgmapvs.e . . . . 5  |-  .xb  =  ( .s `  C )
10 hgmapvs.s . . . . 5  |-  S  =  ( (HDMap `  K
) `  W )
11 hgmapvs.g . . . . 5  |-  G  =  ( (HGMap `  K
) `  W )
12 hgmapvs.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 hgmapvs.f . . . . 5  |-  ( ph  ->  F  e.  B )
142, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13hgmapval 32702 . . . 4  |-  ( ph  ->  ( G `  F
)  =  ( iota_ g  e.  B A. x  e.  V  ( S `  ( F  .x.  x
) )  =  ( g  .xb  ( S `  x ) ) ) )
1514eqcomd 2301 . . 3  |-  ( ph  ->  ( iota_ g  e.  B A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( g  .xb  ( S `  x ) ) )  =  ( G `  F ) )
162, 3, 6, 7, 11, 12, 13hgmapcl 32704 . . . 4  |-  ( ph  ->  ( G `  F
)  e.  B )
172, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13hdmap14lem15 32697 . . . 4  |-  ( ph  ->  E! g  e.  B  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( g  .xb  ( S `  x ) ) )
18 oveq1 5881 . . . . . . 7  |-  ( g  =  ( G `  F )  ->  (
g  .xb  ( S `  x ) )  =  ( ( G `  F )  .xb  ( S `  x )
) )
1918eqeq2d 2307 . . . . . 6  |-  ( g  =  ( G `  F )  ->  (
( S `  ( F  .x.  x ) )  =  ( g  .xb  ( S `  x ) )  <->  ( S `  ( F  .x.  x ) )  =  ( ( G `  F ) 
.xb  ( S `  x ) ) ) )
2019ralbidv 2576 . . . . 5  |-  ( g  =  ( G `  F )  ->  ( A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( g  .xb  ( S `  x ) )  <->  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) ) ) )
2120riota2 6343 . . . 4  |-  ( ( ( G `  F
)  e.  B  /\  E! g  e.  B  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( g  .xb  ( S `  x ) ) )  ->  ( A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) )  <->  ( iota_ g  e.  B A. x  e.  V  ( S `  ( F  .x.  x ) )  =  ( g 
.xb  ( S `  x ) ) )  =  ( G `  F ) ) )
2216, 17, 21syl2anc 642 . . 3  |-  ( ph  ->  ( A. x  e.  V  ( S `  ( F  .x.  x ) )  =  ( ( G `  F ) 
.xb  ( S `  x ) )  <->  ( iota_ g  e.  B A. x  e.  V  ( S `  ( F  .x.  x
) )  =  ( g  .xb  ( S `  x ) ) )  =  ( G `  F ) ) )
2315, 22mpbird 223 . 2  |-  ( ph  ->  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) ) )
24 oveq2 5882 . . . . 5  |-  ( x  =  X  ->  ( F  .x.  x )  =  ( F  .x.  X
) )
2524fveq2d 5545 . . . 4  |-  ( x  =  X  ->  ( S `  ( F  .x.  x ) )  =  ( S `  ( F  .x.  X ) ) )
26 fveq2 5541 . . . . 5  |-  ( x  =  X  ->  ( S `  x )  =  ( S `  X ) )
2726oveq2d 5890 . . . 4  |-  ( x  =  X  ->  (
( G `  F
)  .xb  ( S `  x ) )  =  ( ( G `  F )  .xb  ( S `  X )
) )
2825, 27eqeq12d 2310 . . 3  |-  ( x  =  X  ->  (
( S `  ( F  .x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) )  <->  ( S `  ( F  .x.  X ) )  =  ( ( G `  F ) 
.xb  ( S `  X ) ) ) )
2928rspcva 2895 . 2  |-  ( ( X  e.  V  /\  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) ) )  ->  ( S `  ( F  .x.  X ) )  =  ( ( G `  F )  .xb  ( S `  X )
) )
301, 23, 29syl2anc 642 1  |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( ( G `
 F )  .xb  ( S `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E!wreu 2558   ` cfv 5271  (class class class)co 5874   iota_crio 6313   Basecbs 13164  Scalarcsca 13227   .scvsca 13228   HLchlt 30162   LHypclh 30795   DVecHcdvh 31890  LCDualclcd 32398  HDMapchdma 32605  HGMapchg 32698
This theorem is referenced by:  hgmapval0  32707  hgmapval1  32708  hgmapadd  32709  hgmapmul  32710  hgmaprnlem1N  32711  hgmap11  32717  hdmapglnm2  32726
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-ot 3663  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-undef 6314  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-0g 13420  df-mre 13504  df-mrc 13505  df-acs 13507  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-cntz 14809  df-oppg 14835  df-lsm 14963  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-drng 15530  df-lmod 15645  df-lss 15706  df-lsp 15745  df-lvec 15872  df-lsatoms 29788  df-lshyp 29789  df-lcv 29831  df-lfl 29870  df-lkr 29898  df-ldual 29936  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-tgrp 31554  df-tendo 31566  df-edring 31568  df-dveca 31814  df-disoa 31841  df-dvech 31891  df-dib 31951  df-dic 31985  df-dih 32041  df-doch 32160  df-djh 32207  df-lcdual 32399  df-mapd 32437  df-hvmap 32569  df-hdmap1 32606  df-hdmap 32607  df-hgmap 32699
  Copyright terms: Public domain W3C validator