Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapvs Unicode version

Theorem hgmapvs 31457
Description: Part 15 of [Baer] p. 50 line 6. Also line 15 in [Holland95] p. 14. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hgmapvs.h  |-  H  =  ( LHyp `  K
)
hgmapvs.u  |-  U  =  ( ( DVecH `  K
) `  W )
hgmapvs.v  |-  V  =  ( Base `  U
)
hgmapvs.t  |-  .x.  =  ( .s `  U )
hgmapvs.r  |-  R  =  (Scalar `  U )
hgmapvs.b  |-  B  =  ( Base `  R
)
hgmapvs.c  |-  C  =  ( (LCDual `  K
) `  W )
hgmapvs.e  |-  .xb  =  ( .s `  C )
hgmapvs.s  |-  S  =  ( (HDMap `  K
) `  W )
hgmapvs.g  |-  G  =  ( (HGMap `  K
) `  W )
hgmapvs.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hgmapvs.x  |-  ( ph  ->  X  e.  V )
hgmapvs.f  |-  ( ph  ->  F  e.  B )
Assertion
Ref Expression
hgmapvs  |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( ( G `
 F )  .xb  ( S `  X ) ) )

Proof of Theorem hgmapvs
Dummy variables  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgmapvs.x . 2  |-  ( ph  ->  X  e.  V )
2 hgmapvs.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 hgmapvs.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
4 hgmapvs.v . . . . 5  |-  V  =  ( Base `  U
)
5 hgmapvs.t . . . . 5  |-  .x.  =  ( .s `  U )
6 hgmapvs.r . . . . 5  |-  R  =  (Scalar `  U )
7 hgmapvs.b . . . . 5  |-  B  =  ( Base `  R
)
8 hgmapvs.c . . . . 5  |-  C  =  ( (LCDual `  K
) `  W )
9 hgmapvs.e . . . . 5  |-  .xb  =  ( .s `  C )
10 hgmapvs.s . . . . 5  |-  S  =  ( (HDMap `  K
) `  W )
11 hgmapvs.g . . . . 5  |-  G  =  ( (HGMap `  K
) `  W )
12 hgmapvs.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 hgmapvs.f . . . . 5  |-  ( ph  ->  F  e.  B )
142, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13hgmapval 31453 . . . 4  |-  ( ph  ->  ( G `  F
)  =  ( iota_ g  e.  B A. x  e.  V  ( S `  ( F  .x.  x
) )  =  ( g  .xb  ( S `  x ) ) ) )
1514eqcomd 2288 . . 3  |-  ( ph  ->  ( iota_ g  e.  B A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( g  .xb  ( S `  x ) ) )  =  ( G `  F ) )
162, 3, 6, 7, 11, 12, 13hgmapcl 31455 . . . 4  |-  ( ph  ->  ( G `  F
)  e.  B )
172, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13hdmap14lem15 31448 . . . 4  |-  ( ph  ->  E! g  e.  B  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( g  .xb  ( S `  x ) ) )
18 oveq1 5865 . . . . . . 7  |-  ( g  =  ( G `  F )  ->  (
g  .xb  ( S `  x ) )  =  ( ( G `  F )  .xb  ( S `  x )
) )
1918eqeq2d 2294 . . . . . 6  |-  ( g  =  ( G `  F )  ->  (
( S `  ( F  .x.  x ) )  =  ( g  .xb  ( S `  x ) )  <->  ( S `  ( F  .x.  x ) )  =  ( ( G `  F ) 
.xb  ( S `  x ) ) ) )
2019ralbidv 2563 . . . . 5  |-  ( g  =  ( G `  F )  ->  ( A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( g  .xb  ( S `  x ) )  <->  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) ) ) )
2120riota2 6327 . . . 4  |-  ( ( ( G `  F
)  e.  B  /\  E! g  e.  B  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( g  .xb  ( S `  x ) ) )  ->  ( A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) )  <->  ( iota_ g  e.  B A. x  e.  V  ( S `  ( F  .x.  x ) )  =  ( g 
.xb  ( S `  x ) ) )  =  ( G `  F ) ) )
2216, 17, 21syl2anc 642 . . 3  |-  ( ph  ->  ( A. x  e.  V  ( S `  ( F  .x.  x ) )  =  ( ( G `  F ) 
.xb  ( S `  x ) )  <->  ( iota_ g  e.  B A. x  e.  V  ( S `  ( F  .x.  x
) )  =  ( g  .xb  ( S `  x ) ) )  =  ( G `  F ) ) )
2315, 22mpbird 223 . 2  |-  ( ph  ->  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) ) )
24 oveq2 5866 . . . . 5  |-  ( x  =  X  ->  ( F  .x.  x )  =  ( F  .x.  X
) )
2524fveq2d 5529 . . . 4  |-  ( x  =  X  ->  ( S `  ( F  .x.  x ) )  =  ( S `  ( F  .x.  X ) ) )
26 fveq2 5525 . . . . 5  |-  ( x  =  X  ->  ( S `  x )  =  ( S `  X ) )
2726oveq2d 5874 . . . 4  |-  ( x  =  X  ->  (
( G `  F
)  .xb  ( S `  x ) )  =  ( ( G `  F )  .xb  ( S `  X )
) )
2825, 27eqeq12d 2297 . . 3  |-  ( x  =  X  ->  (
( S `  ( F  .x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) )  <->  ( S `  ( F  .x.  X ) )  =  ( ( G `  F ) 
.xb  ( S `  X ) ) ) )
2928rspcva 2882 . 2  |-  ( ( X  e.  V  /\  A. x  e.  V  ( S `  ( F 
.x.  x ) )  =  ( ( G `
 F )  .xb  ( S `  x ) ) )  ->  ( S `  ( F  .x.  X ) )  =  ( ( G `  F )  .xb  ( S `  X )
) )
301, 23, 29syl2anc 642 1  |-  ( ph  ->  ( S `  ( F  .x.  X ) )  =  ( ( G `
 F )  .xb  ( S `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E!wreu 2545   ` cfv 5255  (class class class)co 5858   iota_crio 6297   Basecbs 13148  Scalarcsca 13211   .scvsca 13212   HLchlt 28913   LHypclh 29546   DVecHcdvh 30641  LCDualclcd 31149  HDMapchdma 31356  HGMapchg 31449
This theorem is referenced by:  hgmapval0  31458  hgmapval1  31459  hgmapadd  31460  hgmapmul  31461  hgmaprnlem1N  31462  hgmap11  31468  hdmapglnm2  31477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-undef 6298  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-0g 13404  df-mre 13488  df-mrc 13489  df-acs 13491  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-cntz 14793  df-oppg 14819  df-lsm 14947  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-drng 15514  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lvec 15856  df-lsatoms 28539  df-lshyp 28540  df-lcv 28582  df-lfl 28621  df-lkr 28649  df-ldual 28687  df-oposet 28739  df-ol 28741  df-oml 28742  df-covers 28829  df-ats 28830  df-atl 28861  df-cvlat 28885  df-hlat 28914  df-llines 29060  df-lplanes 29061  df-lvols 29062  df-lines 29063  df-psubsp 29065  df-pmap 29066  df-padd 29358  df-lhyp 29550  df-laut 29551  df-ldil 29666  df-ltrn 29667  df-trl 29721  df-tgrp 30305  df-tendo 30317  df-edring 30319  df-dveca 30565  df-disoa 30592  df-dvech 30642  df-dib 30702  df-dic 30736  df-dih 30792  df-doch 30911  df-djh 30958  df-lcdual 31150  df-mapd 31188  df-hvmap 31320  df-hdmap1 31357  df-hdmap 31358  df-hgmap 31450
  Copyright terms: Public domain W3C validator