HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilablo Unicode version

Theorem hilablo 21731
Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilablo  |-  +h  e.  AbelOp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem hilablo
StepHypRef Expression
1 ax-hilex 21571 . . 3  |-  ~H  e.  _V
2 ax-hfvadd 21572 . . 3  |-  +h  :
( ~H  X.  ~H )
--> ~H
3 ax-hvass 21574 . . 3  |-  ( ( x  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( x  +h  y
)  +h  z )  =  ( x  +h  ( y  +h  z
) ) )
4 ax-hv0cl 21575 . . 3  |-  0h  e.  ~H
5 hvaddid2 21594 . . 3  |-  ( x  e.  ~H  ->  ( 0h  +h  x )  =  x )
6 neg1cn 9808 . . . 4  |-  -u 1  e.  CC
7 hvmulcl 21585 . . . 4  |-  ( (
-u 1  e.  CC  /\  x  e.  ~H )  ->  ( -u 1  .h  x )  e.  ~H )
86, 7mpan 653 . . 3  |-  ( x  e.  ~H  ->  ( -u 1  .h  x )  e.  ~H )
9 ax-hvcom 21573 . . . . 5  |-  ( ( ( -u 1  .h  x )  e.  ~H  /\  x  e.  ~H )  ->  ( ( -u 1  .h  x )  +h  x
)  =  ( x  +h  ( -u 1  .h  x ) ) )
108, 9mpancom 652 . . . 4  |-  ( x  e.  ~H  ->  (
( -u 1  .h  x
)  +h  x )  =  ( x  +h  ( -u 1  .h  x
) ) )
11 hvnegid 21598 . . . 4  |-  ( x  e.  ~H  ->  (
x  +h  ( -u
1  .h  x ) )  =  0h )
1210, 11eqtrd 2316 . . 3  |-  ( x  e.  ~H  ->  (
( -u 1  .h  x
)  +h  x )  =  0h )
131, 2, 3, 4, 5, 8, 12isgrpoi 20857 . 2  |-  +h  e.  GrpOp
142fdmi 5359 . 2  |-  dom  +h  =  ( ~H  X.  ~H )
15 ax-hvcom 21573 . 2  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  =  ( y  +h  x ) )
1613, 14, 15isabloi 20947 1  |-  +h  e.  AbelOp
Colors of variables: wff set class
Syntax hints:    = wceq 1624    e. wcel 1685    X. cxp 4686  (class class class)co 5819   CCcc 8730   1c1 8733   -ucneg 9033   AbelOpcablo 20940   ~Hchil 21491    +h cva 21492    .h csm 21493   0hc0v 21496
This theorem is referenced by:  hilid  21732  hilvc  21733  hhnv  21736  hhba  21738  hhph  21749  hhssva  21828  hhsssm  21829  hhssabloi  21831  hhshsslem1  21836  shsval  21883
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-hilex 21571  ax-hfvadd 21572  ax-hvcom 21573  ax-hvass 21574  ax-hv0cl 21575  ax-hvaddid 21576  ax-hfvmul 21577  ax-hvmulid 21578  ax-hvdistr2 21581  ax-hvmul0 21582
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-iota 6252  df-riota 6299  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-pnf 8864  df-mnf 8865  df-ltxr 8867  df-sub 9034  df-neg 9035  df-grpo 20850  df-ablo 20941  df-hvsub 21543
  Copyright terms: Public domain W3C validator