HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilablo Unicode version

Theorem hilablo 21755
Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilablo  |-  +h  e.  AbelOp

Proof of Theorem hilablo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 21595 . . 3  |-  ~H  e.  _V
2 ax-hfvadd 21596 . . 3  |-  +h  :
( ~H  X.  ~H )
--> ~H
3 ax-hvass 21598 . . 3  |-  ( ( x  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( x  +h  y
)  +h  z )  =  ( x  +h  ( y  +h  z
) ) )
4 ax-hv0cl 21599 . . 3  |-  0h  e.  ~H
5 hvaddid2 21618 . . 3  |-  ( x  e.  ~H  ->  ( 0h  +h  x )  =  x )
6 neg1cn 9829 . . . 4  |-  -u 1  e.  CC
7 hvmulcl 21609 . . . 4  |-  ( (
-u 1  e.  CC  /\  x  e.  ~H )  ->  ( -u 1  .h  x )  e.  ~H )
86, 7mpan 651 . . 3  |-  ( x  e.  ~H  ->  ( -u 1  .h  x )  e.  ~H )
9 ax-hvcom 21597 . . . . 5  |-  ( ( ( -u 1  .h  x )  e.  ~H  /\  x  e.  ~H )  ->  ( ( -u 1  .h  x )  +h  x
)  =  ( x  +h  ( -u 1  .h  x ) ) )
108, 9mpancom 650 . . . 4  |-  ( x  e.  ~H  ->  (
( -u 1  .h  x
)  +h  x )  =  ( x  +h  ( -u 1  .h  x
) ) )
11 hvnegid 21622 . . . 4  |-  ( x  e.  ~H  ->  (
x  +h  ( -u
1  .h  x ) )  =  0h )
1210, 11eqtrd 2328 . . 3  |-  ( x  e.  ~H  ->  (
( -u 1  .h  x
)  +h  x )  =  0h )
131, 2, 3, 4, 5, 8, 12isgrpoi 20881 . 2  |-  +h  e.  GrpOp
142fdmi 5410 . 2  |-  dom  +h  =  ( ~H  X.  ~H )
15 ax-hvcom 21597 . 2  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  =  ( y  +h  x ) )
1613, 14, 15isabloi 20971 1  |-  +h  e.  AbelOp
Colors of variables: wff set class
Syntax hints:    = wceq 1632    e. wcel 1696    X. cxp 4703  (class class class)co 5874   CCcc 8751   1c1 8754   -ucneg 9054   AbelOpcablo 20964   ~Hchil 21515    +h cva 21516    .h csm 21517   0hc0v 21520
This theorem is referenced by:  hilid  21756  hilvc  21757  hhnv  21760  hhba  21762  hhph  21773  hhssva  21852  hhsssm  21853  hhssabloi  21855  hhshsslem1  21860  shsval  21907
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-hilex 21595  ax-hfvadd 21596  ax-hvcom 21597  ax-hvass 21598  ax-hv0cl 21599  ax-hvaddid 21600  ax-hfvmul 21601  ax-hvmulid 21602  ax-hvdistr2 21605  ax-hvmul0 21606
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055  df-neg 9056  df-grpo 20874  df-ablo 20965  df-hvsub 21567
  Copyright terms: Public domain W3C validator