HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilablo Unicode version

Theorem hilablo 22645
Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilablo  |-  +h  e.  AbelOp

Proof of Theorem hilablo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 22485 . . 3  |-  ~H  e.  _V
2 ax-hfvadd 22486 . . 3  |-  +h  :
( ~H  X.  ~H )
--> ~H
3 ax-hvass 22488 . . 3  |-  ( ( x  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( x  +h  y
)  +h  z )  =  ( x  +h  ( y  +h  z
) ) )
4 ax-hv0cl 22489 . . 3  |-  0h  e.  ~H
5 hvaddid2 22508 . . 3  |-  ( x  e.  ~H  ->  ( 0h  +h  x )  =  x )
6 neg1cn 10051 . . . 4  |-  -u 1  e.  CC
7 hvmulcl 22499 . . . 4  |-  ( (
-u 1  e.  CC  /\  x  e.  ~H )  ->  ( -u 1  .h  x )  e.  ~H )
86, 7mpan 652 . . 3  |-  ( x  e.  ~H  ->  ( -u 1  .h  x )  e.  ~H )
9 ax-hvcom 22487 . . . . 5  |-  ( ( ( -u 1  .h  x )  e.  ~H  /\  x  e.  ~H )  ->  ( ( -u 1  .h  x )  +h  x
)  =  ( x  +h  ( -u 1  .h  x ) ) )
108, 9mpancom 651 . . . 4  |-  ( x  e.  ~H  ->  (
( -u 1  .h  x
)  +h  x )  =  ( x  +h  ( -u 1  .h  x
) ) )
11 hvnegid 22512 . . . 4  |-  ( x  e.  ~H  ->  (
x  +h  ( -u
1  .h  x ) )  =  0h )
1210, 11eqtrd 2462 . . 3  |-  ( x  e.  ~H  ->  (
( -u 1  .h  x
)  +h  x )  =  0h )
131, 2, 3, 4, 5, 8, 12isgrpoi 21769 . 2  |-  +h  e.  GrpOp
142fdmi 5582 . 2  |-  dom  +h  =  ( ~H  X.  ~H )
15 ax-hvcom 22487 . 2  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  =  ( y  +h  x ) )
1613, 14, 15isabloi 21859 1  |-  +h  e.  AbelOp
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725    X. cxp 4862  (class class class)co 6067   CCcc 8972   1c1 8975   -ucneg 9276   AbelOpcablo 21852   ~Hchil 22405    +h cva 22406    .h csm 22407   0hc0v 22410
This theorem is referenced by:  hilid  22646  hilvc  22647  hhnv  22650  hhba  22652  hhph  22663  hhssva  22742  hhsssm  22743  hhssabloi  22745  hhshsslem1  22750  shsval  22797
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-hilex 22485  ax-hfvadd 22486  ax-hvcom 22487  ax-hvass 22488  ax-hv0cl 22489  ax-hvaddid 22490  ax-hfvmul 22491  ax-hvmulid 22492  ax-hvdistr2 22495  ax-hvmul0 22496
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-po 4490  df-so 4491  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-riota 6535  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-pnf 9106  df-mnf 9107  df-ltxr 9109  df-sub 9277  df-neg 9278  df-grpo 21762  df-ablo 21853  df-hvsub 22457
  Copyright terms: Public domain W3C validator