HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his5 Unicode version

Theorem his5 21665
Description: Associative law for inner product. Lemma 3.1(S5) of [Beran] p. 95. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
his5  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  ( A  .h  C ) )  =  ( ( * `  A )  x.  ( B  .ih  C ) ) )

Proof of Theorem his5
StepHypRef Expression
1 hvmulcl 21593 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  ~H )  ->  ( A  .h  C
)  e.  ~H )
2 ax-his1 21661 . . . . 5  |-  ( ( B  e.  ~H  /\  ( A  .h  C
)  e.  ~H )  ->  ( B  .ih  ( A  .h  C )
)  =  ( * `
 ( ( A  .h  C )  .ih  B ) ) )
31, 2sylan2 460 . . . 4  |-  ( ( B  e.  ~H  /\  ( A  e.  CC  /\  C  e.  ~H )
)  ->  ( B  .ih  ( A  .h  C
) )  =  ( * `  ( ( A  .h  C ) 
.ih  B ) ) )
433impb 1147 . . 3  |-  ( ( B  e.  ~H  /\  A  e.  CC  /\  C  e.  ~H )  ->  ( B  .ih  ( A  .h  C ) )  =  ( * `  (
( A  .h  C
)  .ih  B )
) )
543com12 1155 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  ( A  .h  C ) )  =  ( * `  (
( A  .h  C
)  .ih  B )
) )
6 ax-his3 21663 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  ~H  /\  B  e.  ~H )  ->  (
( A  .h  C
)  .ih  B )  =  ( A  x.  ( C  .ih  B ) ) )
763com23 1157 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  .h  C
)  .ih  B )  =  ( A  x.  ( C  .ih  B ) ) )
87fveq2d 5529 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
* `  ( ( A  .h  C )  .ih  B ) )  =  ( * `  ( A  x.  ( C  .ih  B ) ) ) )
9 hicl 21659 . . . . . 6  |-  ( ( C  e.  ~H  /\  B  e.  ~H )  ->  ( C  .ih  B
)  e.  CC )
10 cjmul 11627 . . . . . 6  |-  ( ( A  e.  CC  /\  ( C  .ih  B )  e.  CC )  -> 
( * `  ( A  x.  ( C  .ih  B ) ) )  =  ( ( * `
 A )  x.  ( * `  ( C  .ih  B ) ) ) )
119, 10sylan2 460 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  ~H  /\  B  e.  ~H )
)  ->  ( * `  ( A  x.  ( C  .ih  B ) ) )  =  ( ( * `  A )  x.  ( * `  ( C  .ih  B ) ) ) )
12113impb 1147 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  ~H  /\  B  e.  ~H )  ->  (
* `  ( A  x.  ( C  .ih  B
) ) )  =  ( ( * `  A )  x.  (
* `  ( C  .ih  B ) ) ) )
13123com23 1157 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
* `  ( A  x.  ( C  .ih  B
) ) )  =  ( ( * `  A )  x.  (
* `  ( C  .ih  B ) ) ) )
14 ax-his1 21661 . . . . 5  |-  ( ( B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  C
)  =  ( * `
 ( C  .ih  B ) ) )
15143adant1 973 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  C )  =  ( * `  ( C  .ih  B ) ) )
1615oveq2d 5874 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( * `  A
)  x.  ( B 
.ih  C ) )  =  ( ( * `
 A )  x.  ( * `  ( C  .ih  B ) ) ) )
1713, 16eqtr4d 2318 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
* `  ( A  x.  ( C  .ih  B
) ) )  =  ( ( * `  A )  x.  ( B  .ih  C ) ) )
185, 8, 173eqtrd 2319 1  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  ( A  .h  C ) )  =  ( ( * `  A )  x.  ( B  .ih  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   CCcc 8735    x. cmul 8742   *ccj 11581   ~Hchil 21499    .h csm 21501    .ih csp 21502
This theorem is referenced by:  his52  21666  his35  21667  normlem0  21688  normlem9  21697  bcseqi  21699  polid2i  21736  pjhthlem1  21970  eigrei  22414  eigposi  22416  eigorthi  22417  brafnmul  22531  lnopunilem1  22590  hmopm  22601  cnlnadjlem6  22652  adjlnop  22666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-hfvmul 21585  ax-hfi 21658  ax-his1 21661  ax-his3 21663
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-2 9804  df-cj 11584  df-re 11585  df-im 11586
  Copyright terms: Public domain W3C validator