Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatexch2 Structured version   Unicode version

Theorem hlatexch2 30130
Description: Atom exchange property. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
hlatexchb.l  |-  .<_  =  ( le `  K )
hlatexchb.j  |-  .\/  =  ( join `  K )
hlatexchb.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlatexch2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  R )  ->  ( P  .<_  ( Q  .\/  R
)  ->  Q  .<_  ( P  .\/  R ) ) )

Proof of Theorem hlatexch2
StepHypRef Expression
1 hlcvl 30094 . 2  |-  ( K  e.  HL  ->  K  e.  CvLat )
2 hlatexchb.l . . 3  |-  .<_  =  ( le `  K )
3 hlatexchb.j . . 3  |-  .\/  =  ( join `  K )
4 hlatexchb.a . . 3  |-  A  =  ( Atoms `  K )
52, 3, 4cvlatexch2 30072 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  ( P  .<_  ( Q  .\/  R
)  ->  Q  .<_  ( P  .\/  R ) ) )
61, 5syl3an1 1217 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  R )  ->  ( P  .<_  ( Q  .\/  R
)  ->  Q  .<_  ( P  .\/  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   lecple 13528   joincjn 14393   Atomscatm 29998   CvLatclc 30000   HLchlt 30085
This theorem is referenced by:  2llnneN  30143  atexchcvrN  30174  atbtwnex  30182  3dimlem3  30195  3dimlem3OLDN  30196  3dimlem4  30198  3dimlem4OLDN  30199  hlatexch4  30215  3atlem5  30221  dalem27  30433  cdlemblem  30527  paddasslem1  30554  paddasslem6  30559  cdleme3g  30968  cdleme3h  30969  cdleme7d  30980  cdleme11c  30995  cdleme11dN  30996  cdleme36a  31194  cdlemeg46rgv  31262  cdlemk14  31588  dia2dimlem1  31799  dia2dimlem2  31800  dia2dimlem3  31801
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-join 14425  df-lat 14467  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086
  Copyright terms: Public domain W3C validator