MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlex Unicode version

Theorem hlex 21469
Description: The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlex.1  |-  X  =  ( BaseSet `  U )
Assertion
Ref Expression
hlex  |-  X  e. 
_V

Proof of Theorem hlex
StepHypRef Expression
1 hlex.1 . 2  |-  X  =  ( BaseSet `  U )
2 fvex 5499 . 2  |-  ( BaseSet `  U )  e.  _V
31, 2eqeltri 2354 1  |-  X  e. 
_V
Colors of variables: wff set class
Syntax hints:    = wceq 1624    e. wcel 1685   _Vcvv 2789   ` cfv 5221   BaseSetcba 21134
This theorem is referenced by:  htthlem  21489  h2hcau  21551  h2hlm  21552  axhilex-zf  21553
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-rex 2550  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-sn 3647  df-pr 3648  df-uni 3829  df-fv 5229
  Copyright terms: Public domain W3C validator