HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimf Structured version   Unicode version

Theorem hlimf 22732
Description: Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimf  |-  ~~>v  : dom  ~~>v  --> ~H

Proof of Theorem hlimf
StepHypRef Expression
1 eqid 2435 . . . . . . 7  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
2 eqid 2435 . . . . . . 7  |-  ( IndMet ` 
<. <.  +h  ,  .h  >. ,  normh >. )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
31, 2hhxmet 22669 . . . . . 6  |-  ( IndMet ` 
<. <.  +h  ,  .h  >. ,  normh >. )  e.  ( * Met `  ~H )
4 eqid 2435 . . . . . . 7  |-  ( MetOpen `  ( IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
)  =  ( MetOpen `  ( IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
)
54methaus 18542 . . . . . 6  |-  ( (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )  e.  ( * Met `  ~H )  ->  ( MetOpen `  ( IndMet `
 <. <.  +h  ,  .h  >. ,  normh >. ) )  e. 
Haus )
6 lmfun 17437 . . . . . 6  |-  ( (
MetOpen `  ( IndMet `  <. <.  +h  ,  .h  >. ,  normh >.
) )  e.  Haus  ->  Fun  ( ~~> t `  ( MetOpen
`  ( IndMet `  <. <.  +h  ,  .h  >. ,  normh >.
) ) ) )
73, 5, 6mp2b 10 . . . . 5  |-  Fun  ( ~~> t `  ( MetOpen `  ( IndMet `
 <. <.  +h  ,  .h  >. ,  normh >. ) ) )
8 funres 5484 . . . . 5  |-  ( Fun  ( ~~> t `  ( MetOpen
`  ( IndMet `  <. <.  +h  ,  .h  >. ,  normh >.
) ) )  ->  Fun  ( ( ~~> t `  ( MetOpen `  ( IndMet ` 
<. <.  +h  ,  .h  >. ,  normh >. ) ) )  |`  ( ~H  ^m  NN ) ) )
97, 8ax-mp 8 . . . 4  |-  Fun  (
( ~~> t `  ( MetOpen
`  ( IndMet `  <. <.  +h  ,  .h  >. ,  normh >.
) ) )  |`  ( ~H  ^m  NN ) )
101, 2, 4hhlm 22693 . . . . 5  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( IndMet `  <. <.  +h  ,  .h  >. ,  normh >.
) ) )  |`  ( ~H  ^m  NN ) )
1110funeqi 5466 . . . 4  |-  ( Fun  ~~>v  <->  Fun  ( ( ~~> t `  ( MetOpen `  ( IndMet ` 
<. <.  +h  ,  .h  >. ,  normh >. ) ) )  |`  ( ~H  ^m  NN ) ) )
129, 11mpbir 201 . . 3  |-  Fun  ~~>v
13 funfn 5474 . . 3  |-  ( Fun  ~~>v  <->  ~~>v  Fn  dom  ~~>v  )
1412, 13mpbi 200 . 2  |-  ~~>v  Fn  dom  ~~>v
15 funfvbrb 5835 . . . . 5  |-  ( Fun  ~~>v 
->  ( x  e.  dom  ~~>v  <->  x  ~~>v  (  ~~>v  `  x )
) )
1612, 15ax-mp 8 . . . 4  |-  ( x  e.  dom  ~~>v  <->  x  ~~>v  ( 
~~>v  `  x ) )
17 fvex 5734 . . . . 5  |-  (  ~~>v  `  x )  e.  _V
1817hlimveci 22684 . . . 4  |-  ( x 
~~>v  (  ~~>v  `  x )  ->  (  ~~>v  `  x )  e.  ~H )
1916, 18sylbi 188 . . 3  |-  ( x  e.  dom  ~~>v  ->  (  ~~>v 
`  x )  e. 
~H )
2019rgen 2763 . 2  |-  A. x  e.  dom  ~~>v  (  ~~>v  `  x
)  e.  ~H
21 ffnfv 5886 . 2  |-  (  ~~>v  : dom  ~~>v  --> ~H  <->  (  ~~>v  Fn  dom  ~~>v  /\ 
A. x  e.  dom  ~~>v  (  ~~>v  `  x )  e.  ~H ) )
2214, 20, 21mpbir2an 887 1  |-  ~~>v  : dom  ~~>v  --> ~H
Colors of variables: wff set class
Syntax hints:    <-> wb 177    e. wcel 1725   A.wral 2697   <.cop 3809   class class class wbr 4204   dom cdm 4870    |` cres 4872   Fun wfun 5440    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   NNcn 9992   * Metcxmt 16678   MetOpencmopn 16683   ~~> tclm 17282   Hauscha 17364   IndMetcims 22062   ~Hchil 22414    +h cva 22415    .h csm 22416   normhcno 22418    ~~>v chli 22422
This theorem is referenced by:  hlimuni  22733  hhsscms  22771  occllem  22797  occl  22798  chscllem2  23132  chscllem4  23134
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062  ax-hilex 22494  ax-hfvadd 22495  ax-hvcom 22496  ax-hvass 22497  ax-hv0cl 22498  ax-hvaddid 22499  ax-hfvmul 22500  ax-hvmulid 22501  ax-hvmulass 22502  ax-hvdistr1 22503  ax-hvdistr2 22504  ax-hvmul0 22505  ax-hfi 22573  ax-his1 22576  ax-his2 22577  ax-his3 22578  ax-his4 22579
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-icc 10915  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-top 16955  df-bases 16957  df-topon 16958  df-lm 17285  df-haus 17371  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gdiv 21774  df-ablo 21862  df-vc 22017  df-nv 22063  df-va 22066  df-ba 22067  df-sm 22068  df-0v 22069  df-vs 22070  df-nmcv 22071  df-ims 22072  df-hnorm 22463  df-hvsub 22466  df-hlim 22467
  Copyright terms: Public domain W3C validator