MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlrel Structured version   Unicode version

Theorem hlrel 22392
Description: The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlrel  |-  Rel  CHil OLD

Proof of Theorem hlrel
StepHypRef Expression
1 hlobn 22390 . . 3  |-  ( x  e.  CHil OLD  ->  x  e. 
CBan )
21ssriv 3352 . 2  |-  CHil OLD  C_ 
CBan
3 bnrel 22369 . 2  |-  Rel  CBan
4 relss 4963 . 2  |-  ( CHil
OLD  C_  CBan  ->  ( Rel 
CBan  ->  Rel  CHil OLD )
)
52, 3, 4mp2 9 1  |-  Rel  CHil OLD
Colors of variables: wff set class
Syntax hints:    C_ wss 3320   Rel wrel 4883   CBanccbn 22364   CHil OLDchlo 22387
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-iota 5418  df-fv 5462  df-oprab 6085  df-nv 22071  df-cbn 22365  df-hlo 22388
  Copyright terms: Public domain W3C validator