MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlrel Unicode version

Theorem hlrel 21461
Description: The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlrel  |-  Rel  CHil OLD

Proof of Theorem hlrel
StepHypRef Expression
1 hlobn 21459 . . 3  |-  ( x  e.  CHil OLD  ->  x  e. 
CBan )
21ssriv 3185 . 2  |-  CHil OLD  C_ 
CBan
3 bnrel 21438 . 2  |-  Rel  CBan
4 relss 4774 . 2  |-  ( CHil
OLD  C_  CBan  ->  ( Rel 
CBan  ->  Rel  CHil OLD )
)
52, 3, 4mp2 19 1  |-  Rel  CHil OLD
Colors of variables: wff set class
Syntax hints:    C_ wss 3153   Rel wrel 4693   CBanccbn 21433   CHil OLDchlo 21456
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-xp 4694  df-rel 4695  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fv 5229  df-oprab 5823  df-nv 21140  df-cbn 21434  df-hlo 21457
  Copyright terms: Public domain W3C validator