Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat1 Unicode version

Theorem hlrelat1 29514
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 23714, with  /\ swapped, analog.) (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlrelat1.b  |-  B  =  ( Base `  K
)
hlrelat1.l  |-  .<_  =  ( le `  K )
hlrelat1.s  |-  .<  =  ( lt `  K )
hlrelat1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlrelat1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    Y, p
Allowed substitution hint:    .< ( p)

Proof of Theorem hlrelat1
StepHypRef Expression
1 hlomcmat 29479 . 2  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
) )
2 hlrelat1.b . . 3  |-  B  =  ( Base `  K
)
3 hlrelat1.l . . 3  |-  .<_  =  ( le `  K )
4 hlrelat1.s . . 3  |-  .<  =  ( lt `  K )
5 hlrelat1.a . . 3  |-  A  =  ( Atoms `  K )
62, 3, 4, 5atlrelat1 29436 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
71, 6syl3an1 1217 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2650   class class class wbr 4153   ` cfv 5394   Basecbs 13396   lecple 13463   ltcplt 14325   CLatccla 14463   OMLcoml 29290   Atomscatm 29378   AtLatcal 29379   HLchlt 29465
This theorem is referenced by:  hlrelat5N  29515  hlrelat  29516  hl2at  29519  hlrelat3  29526  cvrexchlem  29533  lhpexle3lem  30125
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466
  Copyright terms: Public domain W3C validator