Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat5N Unicode version

Theorem hlrelat5N 28720
Description: An atomistic lattice with 0 is relatively atomic, using the definition in Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlrelat5.b  |-  B  =  ( Base `  K
)
hlrelat5.l  |-  .<_  =  ( le `  K )
hlrelat5.s  |-  .<  =  ( lt `  K )
hlrelat5.j  |-  .\/  =  ( join `  K )
hlrelat5.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlrelat5N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( X  .<  ( X 
.\/  p )  /\  p  .<_  Y ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    Y, p
Allowed substitution hints:    .< ( p)    .\/ ( p)

Proof of Theorem hlrelat5N
StepHypRef Expression
1 hlrelat5.b . . . 4  |-  B  =  ( Base `  K
)
2 hlrelat5.l . . . 4  |-  .<_  =  ( le `  K )
3 hlrelat5.s . . . 4  |-  .<  =  ( lt `  K )
4 hlrelat5.a . . . 4  |-  A  =  ( Atoms `  K )
51, 2, 3, 4hlrelat1 28719 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
65imp 420 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) )
7 hllat 28683 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
8 id 21 . . . . . . . 8  |-  ( X  e.  B  ->  X  e.  B )
91, 4atbase 28609 . . . . . . . 8  |-  ( p  e.  A  ->  p  e.  B )
10 ovex 5782 . . . . . . . . . . . 12  |-  ( X 
.\/  p )  e. 
_V
1110a1i 12 . . . . . . . . . . 11  |-  ( p  e.  B  ->  ( X  .\/  p )  e. 
_V )
122, 3pltval 14021 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( X  .\/  p )  e.  _V )  -> 
( X  .<  ( X  .\/  p )  <->  ( X  .<_  ( X  .\/  p
)  /\  X  =/=  ( X  .\/  p ) ) ) )
1311, 12syl3an3 1222 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  .<  ( X  .\/  p )  <->  ( X  .<_  ( X  .\/  p
)  /\  X  =/=  ( X  .\/  p ) ) ) )
14 hlrelat5.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
151, 2, 14latlej1 14093 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  X  .<_  ( X  .\/  p ) )
1615biantrurd 496 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  =/=  ( X  .\/  p )  <->  ( X  .<_  ( X  .\/  p
)  /\  X  =/=  ( X  .\/  p ) ) ) )
1713, 16bitr4d 249 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  .<  ( X  .\/  p )  <->  X  =/=  ( X  .\/  p ) ) )
181, 2, 14latleeqj1 14096 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  p  e.  B  /\  X  e.  B )  ->  ( p  .<_  X  <->  ( p  .\/  X )  =  X ) )
19183com23 1162 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( p  .<_  X  <->  ( p  .\/  X )  =  X ) )
201, 14latjcom 14092 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  .\/  p
)  =  ( p 
.\/  X ) )
2120eqeq1d 2264 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( ( X  .\/  p )  =  X  <-> 
( p  .\/  X
)  =  X ) )
2219, 21bitr4d 249 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( p  .<_  X  <->  ( X  .\/  p )  =  X ) )
2322notbid 287 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( -.  p  .<_  X  <->  -.  ( X  .\/  p
)  =  X ) )
24 necom 2500 . . . . . . . . . . 11  |-  ( X  =/=  ( X  .\/  p )  <->  ( X  .\/  p )  =/=  X
)
25 df-ne 2421 . . . . . . . . . . 11  |-  ( ( X  .\/  p )  =/=  X  <->  -.  ( X  .\/  p )  =  X )
2624, 25bitri 242 . . . . . . . . . 10  |-  ( X  =/=  ( X  .\/  p )  <->  -.  ( X  .\/  p )  =  X )
2723, 26syl6bbr 256 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( -.  p  .<_  X  <-> 
X  =/=  ( X 
.\/  p ) ) )
2817, 27bitr4d 249 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  .<  ( X  .\/  p )  <->  -.  p  .<_  X ) )
297, 8, 9, 28syl3an 1229 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  p  e.  A )  ->  ( X  .<  ( X  .\/  p )  <->  -.  p  .<_  X ) )
30293expa 1156 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  p  e.  A
)  ->  ( X  .<  ( X  .\/  p
)  <->  -.  p  .<_  X ) )
3130anbi1d 688 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  p  e.  A
)  ->  ( ( X  .<  ( X  .\/  p )  /\  p  .<_  Y )  <->  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
3231rexbidva 2531 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. p  e.  A  ( X  .<  ( X  .\/  p )  /\  p  .<_  Y )  <->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
33323adant3 980 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( E. p  e.  A  ( X  .<  ( X  .\/  p )  /\  p  .<_  Y )  <->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
3433adantr 453 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( E. p  e.  A  ( X  .<  ( X  .\/  p
)  /\  p  .<_  Y )  <->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
356, 34mpbird 225 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( X  .<  ( X 
.\/  p )  /\  p  .<_  Y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   E.wrex 2517   _Vcvv 2740   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   ltcplt 14002   joincjn 14005   Latclat 14078   Atomscatm 28583   HLchlt 28670
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671
  Copyright terms: Public domain W3C validator