Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsupr Unicode version

Theorem hlsupr 29575
Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.)
Hypotheses
Ref Expression
hlsupr.l  |-  .<_  =  ( le `  K )
hlsupr.j  |-  .\/  =  ( join `  K )
hlsupr.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlsupr  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
Distinct variable groups:    A, r    K, r    P, r    Q, r
Allowed substitution hints:    .\/ ( r)    .<_ ( r)

Proof of Theorem hlsupr
StepHypRef Expression
1 eqid 2283 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 hlsupr.l . . . 4  |-  .<_  =  ( le `  K )
3 hlsupr.j . . . 4  |-  .\/  =  ( join `  K )
4 hlsupr.a . . . 4  |-  A  =  ( Atoms `  K )
51, 2, 3, 4hlsuprexch 29570 . . 3  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( ( P  =/= 
Q  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )  /\  A. r  e.  ( Base `  K ) ( ( -.  P  .<_  r  /\  P  .<_  ( r  .\/  Q ) )  ->  Q  .<_  ( r  .\/  P
) ) ) )
65simpld 445 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) ) )
76imp 418 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   Atomscatm 29453   HLchlt 29540
This theorem is referenced by:  hlsupr2  29576  atbtwnexOLDN  29636  atbtwnex  29637  cdlemb  29983  lhpexle2lem  30198  lhpexle3lem  30200  cdlemf1  30750  cdlemg35  30902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-cvlat 29512  df-hlat 29541
  Copyright terms: Public domain W3C validator