Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsupr Unicode version

Theorem hlsupr 28726
Description: A Hilbert lattice has the superposition property. Theorem 13.2 in [Crawley] p. 107. (Contributed by NM, 30-Jan-2012.)
Hypotheses
Ref Expression
hlsupr.l  |-  .<_  =  ( le `  K )
hlsupr.j  |-  .\/  =  ( join `  K )
hlsupr.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlsupr  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
Distinct variable groups:    A, r    K, r    P, r    Q, r
Allowed substitution hints:    .\/ ( r)    .<_ ( r)

Proof of Theorem hlsupr
StepHypRef Expression
1 eqid 2256 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 hlsupr.l . . . 4  |-  .<_  =  ( le `  K )
3 hlsupr.j . . . 4  |-  .\/  =  ( join `  K )
4 hlsupr.a . . . 4  |-  A  =  ( Atoms `  K )
51, 2, 3, 4hlsuprexch 28721 . . 3  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( ( P  =/= 
Q  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )  /\  A. r  e.  ( Base `  K ) ( ( -.  P  .<_  r  /\  P  .<_  ( r  .\/  Q ) )  ->  Q  .<_  ( r  .\/  P
) ) ) )
65simpld 447 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ) ) ) )
76imp 420 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/= 
Q  /\  r  .<_  ( P  .\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   Basecbs 13096   lecple 13163   joincjn 14026   Atomscatm 28604   HLchlt 28691
This theorem is referenced by:  hlsupr2  28727  atbtwnexOLDN  28787  atbtwnex  28788  cdlemb  29134  lhpexle2lem  29349  lhpexle3lem  29351  cdlemf1  29901  cdlemg35  30053
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-xp 4661  df-cnv 4663  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fv 4675  df-ov 5781  df-cvlat 28663  df-hlat 28692
  Copyright terms: Public domain W3C validator