MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeores Unicode version

Theorem hmeores 17410
Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
hmeores.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeores  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y ) 
Homeo  ( Kt  ( F " Y ) ) ) )

Proof of Theorem hmeores
StepHypRef Expression
1 hmeocn 17399 . . . . 5  |-  ( F  e.  ( J  Homeo  K )  ->  F  e.  ( J  Cn  K
) )
21adantr 453 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  F  e.  ( J  Cn  K
) )
3 hmeores.1 . . . . 5  |-  X  = 
U. J
43cnrest 16961 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  Y  C_  X )  -> 
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  K ) )
52, 4sylancom 651 . . 3  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y )  Cn  K ) )
6 cntop2 16919 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
72, 6syl 17 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  K  e.  Top )
8 eqid 2256 . . . . . 6  |-  U. K  =  U. K
98toptopon 16619 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
107, 9sylib 190 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  K  e.  (TopOn `  U. K ) )
11 df-ima 4668 . . . . . 6  |-  ( F
" Y )  =  ran  (  F  |`  Y )
1211eqimss2i 3194 . . . . 5  |-  ran  (  F  |`  Y )  C_  ( F " Y )
1312a1i 12 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ran  (  F  |`  Y ) 
C_  ( F " Y ) )
14 imassrn 4999 . . . . 5  |-  ( F
" Y )  C_  ran  F
153, 8cnf 16924 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
162, 15syl 17 . . . . . 6  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  F : X --> U. K )
17 frn 5319 . . . . . 6  |-  ( F : X --> U. K  ->  ran  F  C_  U. K
)
1816, 17syl 17 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ran  F 
C_  U. K )
1914, 18syl5ss 3151 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F " Y )  C_  U. K )
20 cnrest2 16962 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  (  F  |`  Y ) 
C_  ( F " Y )  /\  ( F " Y )  C_  U. K )  ->  (
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  K )  <-> 
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  ( Kt  ( F " Y ) ) ) ) )
2110, 13, 19, 20syl3anc 1187 . . 3  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  (
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  K )  <-> 
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  ( Kt  ( F " Y ) ) ) ) )
225, 21mpbid 203 . 2  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y )  Cn  ( Kt  ( F
" Y ) ) ) )
23 hmeocnvcn 17400 . . . . . . 7  |-  ( F  e.  ( J  Homeo  K )  ->  `' F  e.  ( K  Cn  J
) )
2423adantr 453 . . . . . 6  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' F  e.  ( K  Cn  J ) )
258, 3cnf 16924 . . . . . 6  |-  ( `' F  e.  ( K  Cn  J )  ->  `' F : U. K --> X )
2624, 25syl 17 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' F : U. K --> X )
27 ffun 5315 . . . . 5  |-  ( `' F : U. K --> X  ->  Fun  `' F
)
28 funcnvres 5245 . . . . 5  |-  ( Fun  `' F  ->  `' ( F  |`  Y )  =  ( `' F  |`  ( F " Y
) ) )
2926, 27, 283syl 20 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' ( F  |`  Y )  =  ( `' F  |`  ( F " Y
) ) )
308cnrest 16961 . . . . 5  |-  ( ( `' F  e.  ( K  Cn  J )  /\  ( F " Y ) 
C_  U. K )  -> 
( `' F  |`  ( F " Y ) )  e.  ( ( Kt  ( F " Y
) )  Cn  J
) )
3124, 19, 30syl2anc 645 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( `' F  |`  ( F
" Y ) )  e.  ( ( Kt  ( F " Y ) )  Cn  J ) )
3229, 31eqeltrd 2330 . . 3  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  J ) )
33 cntop1 16918 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
342, 33syl 17 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  J  e.  Top )
353toptopon 16619 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3634, 35sylib 190 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  J  e.  (TopOn `  X )
)
37 dfdm4 4846 . . . . . 6  |-  dom  (  F  |`  Y )  =  ran  `' ( F  |`  Y )
38 fssres 5332 . . . . . . . 8  |-  ( ( F : X --> U. K  /\  Y  C_  X )  ->  ( F  |`  Y ) : Y --> U. K )
3916, 38sylancom 651 . . . . . . 7  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y ) : Y --> U. K )
40 fdm 5317 . . . . . . 7  |-  ( ( F  |`  Y ) : Y --> U. K  ->  dom  (  F  |`  Y )  =  Y )
4139, 40syl 17 . . . . . 6  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  dom  (  F  |`  Y )  =  Y )
4237, 41syl5eqr 2302 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ran  `' ( F  |`  Y )  =  Y )
43 eqimss 3191 . . . . 5  |-  ( ran  `' ( F  |`  Y )  =  Y  ->  ran  `' ( F  |`  Y )  C_  Y )
4442, 43syl 17 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ran  `' ( F  |`  Y ) 
C_  Y )
45 simpr 449 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  Y  C_  X )
46 cnrest2 16962 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ran  `' ( F  |`  Y ) 
C_  Y  /\  Y  C_  X )  ->  ( `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  J )  <->  `' ( F  |`  Y )  e.  ( ( Kt  ( F
" Y ) )  Cn  ( Jt  Y ) ) ) )
4736, 44, 45, 46syl3anc 1187 . . 3  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  J )  <->  `' ( F  |`  Y )  e.  ( ( Kt  ( F
" Y ) )  Cn  ( Jt  Y ) ) ) )
4832, 47mpbid 203 . 2  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  ( Jt  Y ) ) )
49 ishmeo 17398 . 2  |-  ( ( F  |`  Y )  e.  ( ( Jt  Y ) 
Homeo  ( Kt  ( F " Y ) ) )  <-> 
( ( F  |`  Y )  e.  ( ( Jt  Y )  Cn  ( Kt  ( F " Y ) ) )  /\  `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  ( Jt  Y ) ) ) )
5022, 48, 49sylanbrc 648 1  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y ) 
Homeo  ( Kt  ( F " Y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    C_ wss 3113   U.cuni 3787   `'ccnv 4646   dom cdm 4647   ran crn 4648    |` cres 4649   "cima 4650   Fun wfun 4653   -->wf 4655   ` cfv 4659  (class class class)co 5778   ↾t crest 13273   Topctop 16579  TopOnctopon 16580    Cn ccn 16902    Homeo chmeo 17392
This theorem is referenced by:  cvmsss2  23163
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-recs 6342  df-rdg 6377  df-oadd 6437  df-er 6614  df-map 6728  df-en 6818  df-fin 6821  df-fi 7119  df-rest 13275  df-topgen 13292  df-top 16584  df-bases 16586  df-topon 16587  df-cn 16905  df-hmeo 17394
  Copyright terms: Public domain W3C validator