MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeores Structured version   Unicode version

Theorem hmeores 17803
Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
hmeores.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeores  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y ) 
Homeo  ( Kt  ( F " Y ) ) ) )

Proof of Theorem hmeores
StepHypRef Expression
1 hmeocn 17792 . . . . 5  |-  ( F  e.  ( J  Homeo  K )  ->  F  e.  ( J  Cn  K
) )
21adantr 452 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  F  e.  ( J  Cn  K
) )
3 hmeores.1 . . . . 5  |-  X  = 
U. J
43cnrest 17349 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  Y  C_  X )  -> 
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  K ) )
52, 4sylancom 649 . . 3  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y )  Cn  K ) )
6 cntop2 17305 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
72, 6syl 16 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  K  e.  Top )
8 eqid 2436 . . . . . 6  |-  U. K  =  U. K
98toptopon 16998 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
107, 9sylib 189 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  K  e.  (TopOn `  U. K ) )
11 df-ima 4891 . . . . . 6  |-  ( F
" Y )  =  ran  ( F  |`  Y )
1211eqimss2i 3403 . . . . 5  |-  ran  ( F  |`  Y )  C_  ( F " Y )
1312a1i 11 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ran  ( F  |`  Y ) 
C_  ( F " Y ) )
14 imassrn 5216 . . . . 5  |-  ( F
" Y )  C_  ran  F
153, 8cnf 17310 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
162, 15syl 16 . . . . . 6  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  F : X --> U. K )
17 frn 5597 . . . . . 6  |-  ( F : X --> U. K  ->  ran  F  C_  U. K
)
1816, 17syl 16 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ran  F 
C_  U. K )
1914, 18syl5ss 3359 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F " Y )  C_  U. K )
20 cnrest2 17350 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  ( F  |`  Y ) 
C_  ( F " Y )  /\  ( F " Y )  C_  U. K )  ->  (
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  K )  <-> 
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  ( Kt  ( F " Y ) ) ) ) )
2110, 13, 19, 20syl3anc 1184 . . 3  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  (
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  K )  <-> 
( F  |`  Y )  e.  ( ( Jt  Y )  Cn  ( Kt  ( F " Y ) ) ) ) )
225, 21mpbid 202 . 2  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y )  Cn  ( Kt  ( F
" Y ) ) ) )
23 hmeocnvcn 17793 . . . . . . 7  |-  ( F  e.  ( J  Homeo  K )  ->  `' F  e.  ( K  Cn  J
) )
2423adantr 452 . . . . . 6  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' F  e.  ( K  Cn  J ) )
258, 3cnf 17310 . . . . . 6  |-  ( `' F  e.  ( K  Cn  J )  ->  `' F : U. K --> X )
2624, 25syl 16 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' F : U. K --> X )
27 ffun 5593 . . . . 5  |-  ( `' F : U. K --> X  ->  Fun  `' F
)
28 funcnvres 5522 . . . . 5  |-  ( Fun  `' F  ->  `' ( F  |`  Y )  =  ( `' F  |`  ( F " Y
) ) )
2926, 27, 283syl 19 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' ( F  |`  Y )  =  ( `' F  |`  ( F " Y
) ) )
308cnrest 17349 . . . . 5  |-  ( ( `' F  e.  ( K  Cn  J )  /\  ( F " Y ) 
C_  U. K )  -> 
( `' F  |`  ( F " Y ) )  e.  ( ( Kt  ( F " Y
) )  Cn  J
) )
3124, 19, 30syl2anc 643 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( `' F  |`  ( F
" Y ) )  e.  ( ( Kt  ( F " Y ) )  Cn  J ) )
3229, 31eqeltrd 2510 . . 3  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  J ) )
33 cntop1 17304 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
342, 33syl 16 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  J  e.  Top )
353toptopon 16998 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3634, 35sylib 189 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  J  e.  (TopOn `  X )
)
37 dfdm4 5063 . . . . . 6  |-  dom  ( F  |`  Y )  =  ran  `' ( F  |`  Y )
38 fssres 5610 . . . . . . . 8  |-  ( ( F : X --> U. K  /\  Y  C_  X )  ->  ( F  |`  Y ) : Y --> U. K )
3916, 38sylancom 649 . . . . . . 7  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y ) : Y --> U. K )
40 fdm 5595 . . . . . . 7  |-  ( ( F  |`  Y ) : Y --> U. K  ->  dom  ( F  |`  Y )  =  Y )
4139, 40syl 16 . . . . . 6  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  dom  ( F  |`  Y )  =  Y )
4237, 41syl5eqr 2482 . . . . 5  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ran  `' ( F  |`  Y )  =  Y )
43 eqimss 3400 . . . . 5  |-  ( ran  `' ( F  |`  Y )  =  Y  ->  ran  `' ( F  |`  Y )  C_  Y )
4442, 43syl 16 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ran  `' ( F  |`  Y ) 
C_  Y )
45 simpr 448 . . . 4  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  Y  C_  X )
46 cnrest2 17350 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ran  `' ( F  |`  Y ) 
C_  Y  /\  Y  C_  X )  ->  ( `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  J )  <->  `' ( F  |`  Y )  e.  ( ( Kt  ( F
" Y ) )  Cn  ( Jt  Y ) ) ) )
4736, 44, 45, 46syl3anc 1184 . . 3  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  J )  <->  `' ( F  |`  Y )  e.  ( ( Kt  ( F
" Y ) )  Cn  ( Jt  Y ) ) ) )
4832, 47mpbid 202 . 2  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  ( Jt  Y ) ) )
49 ishmeo 17791 . 2  |-  ( ( F  |`  Y )  e.  ( ( Jt  Y ) 
Homeo  ( Kt  ( F " Y ) ) )  <-> 
( ( F  |`  Y )  e.  ( ( Jt  Y )  Cn  ( Kt  ( F " Y ) ) )  /\  `' ( F  |`  Y )  e.  ( ( Kt  ( F " Y ) )  Cn  ( Jt  Y ) ) ) )
5022, 48, 49sylanbrc 646 1  |-  ( ( F  e.  ( J 
Homeo  K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y ) 
Homeo  ( Kt  ( F " Y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3320   U.cuni 4015   `'ccnv 4877   dom cdm 4878   ran crn 4879    |` cres 4880   "cima 4881   Fun wfun 5448   -->wf 5450   ` cfv 5454  (class class class)co 6081   ↾t crest 13648   Topctop 16958  TopOnctopon 16959    Cn ccn 17288    Homeo chmeo 17785
This theorem is referenced by:  cvmsss2  24961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-fin 7113  df-fi 7416  df-rest 13650  df-topgen 13667  df-top 16963  df-bases 16965  df-topon 16966  df-cn 17291  df-hmeo 17787
  Copyright terms: Public domain W3C validator