HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmchi Unicode version

Theorem hmopidmchi 22561
Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of [AkhiezerGlazman] p. 64. (Contributed by NM, 21-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1  |-  T  e. 
HrmOp
hmopidmch.2  |-  ( T  o.  T )  =  T
Assertion
Ref Expression
hmopidmchi  |-  ran  T  e.  CH

Proof of Theorem hmopidmchi
StepHypRef Expression
1 hmopidmch.1 . . . 4  |-  T  e. 
HrmOp
2 hmoplin 22352 . . . 4  |-  ( T  e.  HrmOp  ->  T  e.  LinOp
)
31, 2ax-mp 10 . . 3  |-  T  e. 
LinOp
43rnelshi 22469 . 2  |-  ran  T  e.  SH
5 eqid 2253 . . . . . . . 8  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
65hilxmet 21604 . . . . . . 7  |-  ( normh  o. 
-h  )  e.  ( * Met `  ~H )
7 eqid 2253 . . . . . . . 8  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
87methaus 17898 . . . . . . 7  |-  ( (
normh  o.  -h  )  e.  ( * Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  Haus )
96, 8mp1i 13 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  Haus )
10 eqid 2253 . . . . . . . . . . . 12  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
1110, 5hhims 21581 . . . . . . . . . . . 12  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
1210, 11, 7hhlm 21608 . . . . . . . . . . 11  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
13 resss 4886 . . . . . . . . . . 11  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
1412, 13eqsstri 3129 . . . . . . . . . 10  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
1514ssbri 3962 . . . . . . . . 9  |-  ( f 
~~>v  x  ->  f ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) ) x )
1615adantl 454 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) x )
177mopntopon 17817 . . . . . . . . . 10  |-  ( (
normh  o.  -h  )  e.  ( * Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  (TopOn `  ~H ) )
186, 17mp1i 13 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  (TopOn `  ~H ) )
193lnopfi 22379 . . . . . . . . . . . 12  |-  T : ~H
--> ~H
2019a1i 12 . . . . . . . . . . 11  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  T : ~H --> ~H )
2120feqmptd 5427 . . . . . . . . . 10  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  T  =  ( y  e.  ~H  |->  ( T `  y ) ) )
22 hmopbdoptHIL 22398 . . . . . . . . . . . . 13  |-  ( T  e.  HrmOp  ->  T  e.  BndLinOp )
231, 22ax-mp 10 . . . . . . . . . . . 12  |-  T  e.  BndLinOp
24 lnopcnbd 22446 . . . . . . . . . . . . 13  |-  ( T  e.  LinOp  ->  ( T  e.  ConOp 
<->  T  e.  BndLinOp ) )
253, 24ax-mp 10 . . . . . . . . . . . 12  |-  ( T  e.  ConOp 
<->  T  e.  BndLinOp )
2623, 25mpbir 202 . . . . . . . . . . 11  |-  T  e. 
ConOp
275, 7hhcno 22314 . . . . . . . . . . 11  |-  ConOp  =  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( MetOpen `  ( normh  o. 
-h  ) ) )
2826, 27eleqtri 2325 . . . . . . . . . 10  |-  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) )
2921, 28syl6eqelr 2342 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  ( T `  y ) )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3018cnmptid 17187 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  y )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3110hhnv 21574 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
3210hhvs 21579 . . . . . . . . . . 11  |-  -h  =  ( -v `  <. <.  +h  ,  .h  >. ,  normh >. )
3311, 7, 32vmcn 21102 . . . . . . . . . 10  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  -h  e.  ( ( ( MetOpen `  ( normh  o.  -h  )
)  tX  ( MetOpen `  ( normh  o.  -h  )
) )  Cn  ( MetOpen
`  ( normh  o.  -h  ) ) ) )
3431, 33mp1i 13 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  -h  e.  (
( ( MetOpen `  ( normh  o.  -h  ) ) 
tX  ( MetOpen `  ( normh  o.  -h  ) ) )  Cn  ( MetOpen `  ( normh  o.  -h  )
) ) )
3518, 29, 30, 34cnmpt12f 17192 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3616, 35lmcn 16865 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) ) `  x ) )
37 simpl 445 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f : NN --> ran  T )
384shssii 21622 . . . . . . . . . . . . . 14  |-  ran  T  C_ 
~H
39 fss 5254 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  ran  T  C_  ~H )  ->  f : NN --> ~H )
4037, 38, 39sylancl 646 . . . . . . . . . . . . 13  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f : NN --> ~H )
41 ffvelrn 5515 . . . . . . . . . . . . 13  |-  ( ( f : NN --> ~H  /\  k  e.  NN )  ->  ( f `  k
)  e.  ~H )
4240, 41sylan 459 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
f `  k )  e.  ~H )
43 fveq2 5377 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  ( T `  y )  =  ( T `  ( f `  k
) ) )
44 id 21 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  y  =  ( f `  k ) )
4543, 44oveq12d 5728 . . . . . . . . . . . . 13  |-  ( y  =  ( f `  k )  ->  (
( T `  y
)  -h  y )  =  ( ( T `
 ( f `  k ) )  -h  ( f `  k
) ) )
46 eqid 2253 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  =  ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )
47 ovex 5735 . . . . . . . . . . . . 13  |-  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) )  e. 
_V
4845, 46, 47fvmpt 5454 . . . . . . . . . . . 12  |-  ( ( f `  k )  e.  ~H  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) ) )
4942, 48syl 17 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) ) )
50 ffn 5246 . . . . . . . . . . . . . . . 16  |-  ( T : ~H --> ~H  ->  T  Fn  ~H )
5119, 50ax-mp 10 . . . . . . . . . . . . . . 15  |-  T  Fn  ~H
52 fveq2 5377 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( T `  x )  ->  ( T `  y )  =  ( T `  ( T `  x ) ) )
53 id 21 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( T `  x )  ->  y  =  ( T `  x ) )
5452, 53eqeq12d 2267 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( T `  x )  ->  (
( T `  y
)  =  y  <->  ( T `  ( T `  x
) )  =  ( T `  x ) ) )
5554ralrn 5520 . . . . . . . . . . . . . . 15  |-  ( T  Fn  ~H  ->  ( A. y  e.  ran  T ( T `  y
)  =  y  <->  A. x  e.  ~H  ( T `  ( T `  x ) )  =  ( T `
 x ) ) )
5651, 55ax-mp 10 . . . . . . . . . . . . . 14  |-  ( A. y  e.  ran  T ( T `  y )  =  y  <->  A. x  e.  ~H  ( T `  ( T `  x ) )  =  ( T `
 x ) )
57 hmopidmch.2 . . . . . . . . . . . . . . . 16  |-  ( T  o.  T )  =  T
5857fveq1i 5378 . . . . . . . . . . . . . . 15  |-  ( ( T  o.  T ) `
 x )  =  ( T `  x
)
5919, 19hocoi 22174 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  (
( T  o.  T
) `  x )  =  ( T `  ( T `  x ) ) )
6058, 59syl5reqr 2300 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( T `  ( T `  x ) )  =  ( T `  x
) )
6156, 60mprgbir 2575 . . . . . . . . . . . . 13  |-  A. y  e.  ran  T ( T `
 y )  =  y
62 ffvelrn 5515 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  k  e.  NN )  ->  ( f `  k )  e.  ran  T )
6362adantlr 698 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
f `  k )  e.  ran  T )
6443, 44eqeq12d 2267 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  (
( T `  y
)  =  y  <->  ( T `  ( f `  k
) )  =  ( f `  k ) ) )
6564rcla4cv 2818 . . . . . . . . . . . . 13  |-  ( A. y  e.  ran  T ( T `  y )  =  y  ->  (
( f `  k
)  e.  ran  T  ->  ( T `  (
f `  k )
)  =  ( f `
 k ) ) )
6661, 63, 65mpsyl 61 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  ( T `  ( f `  k ) )  =  ( f `  k
) )
6766, 42eqeltrd 2327 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  ( T `  ( f `  k ) )  e. 
~H )
68 hvsubeq0 21477 . . . . . . . . . . . . 13  |-  ( ( ( T `  (
f `  k )
)  e.  ~H  /\  ( f `  k
)  e.  ~H )  ->  ( ( ( T `
 ( f `  k ) )  -h  ( f `  k
) )  =  0h  <->  ( T `  ( f `
 k ) )  =  ( f `  k ) ) )
6967, 42, 68syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( T `  ( f `  k
) )  -h  (
f `  k )
)  =  0h  <->  ( T `  ( f `  k
) )  =  ( f `  k ) ) )
7066, 69mpbird 225 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( T `  (
f `  k )
)  -h  ( f `
 k ) )  =  0h )
7149, 70eqtrd 2285 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  0h )
72 fvco3 5448 . . . . . . . . . . 11  |-  ( ( f : NN --> ran  T  /\  k  e.  NN )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) ) `  ( f `  k
) ) )
7372adantlr 698 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f ) `  k
)  =  ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) ) `  ( f `
 k ) ) )
74 ax-hv0cl 21413 . . . . . . . . . . . . 13  |-  0h  e.  ~H
7574elexi 2736 . . . . . . . . . . . 12  |-  0h  e.  _V
7675fvconst2 5581 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( NN  X.  { 0h } ) `  k
)  =  0h )
7776adantl 454 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( NN  X.  { 0h } ) `  k
)  =  0h )
7871, 73, 773eqtr4d 2295 . . . . . . . . 9  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f ) `  k
)  =  ( ( NN  X.  { 0h } ) `  k
) )
7978ralrimiva 2588 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f ) `  k )  =  ( ( NN  X.  { 0h } ) `  k
) )
80 ovex 5735 . . . . . . . . . . 11  |-  ( ( T `  y )  -h  y )  e. 
_V
8180, 46fnmpti 5229 . . . . . . . . . 10  |-  ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  Fn  ~H
82 fnfco 5264 . . . . . . . . . 10  |-  ( ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y
) )  Fn  ~H  /\  f : NN --> ~H )  ->  ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f )  Fn  NN )
8381, 40, 82sylancr 647 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f )  Fn  NN )
8475fconst 5284 . . . . . . . . . 10  |-  ( NN 
X.  { 0h }
) : NN --> { 0h }
85 ffn 5246 . . . . . . . . . 10  |-  ( ( NN  X.  { 0h } ) : NN --> { 0h }  ->  ( NN  X.  { 0h }
)  Fn  NN )
8684, 85ax-mp 10 . . . . . . . . 9  |-  ( NN 
X.  { 0h }
)  Fn  NN
87 eqfnfv 5474 . . . . . . . . 9  |-  ( ( ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f )  Fn  NN  /\  ( NN  X.  { 0h } )  Fn  NN )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } )  <->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( NN  X.  { 0h } ) `  k ) ) )
8883, 86, 87sylancl 646 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } )  <->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( NN  X.  { 0h } ) `  k ) ) )
8979, 88mpbird 225 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } ) )
90 vex 2730 . . . . . . . . . 10  |-  x  e. 
_V
9190hlimveci 21599 . . . . . . . . 9  |-  ( f 
~~>v  x  ->  x  e.  ~H )
9291adantl 454 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ~H )
93 fveq2 5377 . . . . . . . . . 10  |-  ( y  =  x  ->  ( T `  y )  =  ( T `  x ) )
94 id 21 . . . . . . . . . 10  |-  ( y  =  x  ->  y  =  x )
9593, 94oveq12d 5728 . . . . . . . . 9  |-  ( y  =  x  ->  (
( T `  y
)  -h  y )  =  ( ( T `
 x )  -h  x ) )
96 ovex 5735 . . . . . . . . 9  |-  ( ( T `  x )  -h  x )  e. 
_V
9795, 46, 96fvmpt 5454 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  x
)  =  ( ( T `  x )  -h  x ) )
9892, 97syl 17 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) ) `
 x )  =  ( ( T `  x )  -h  x
) )
9936, 89, 983brtr3d 3949 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) ( ( T `  x )  -h  x ) )
10074a1i 12 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  0h  e.  ~H )
101 1z 9932 . . . . . . . 8  |-  1  e.  ZZ
102101a1i 12 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  1  e.  ZZ )
103 nnuz 10142 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
104103lmconst 16823 . . . . . . 7  |-  ( ( ( MetOpen `  ( normh  o. 
-h  ) )  e.  (TopOn `  ~H )  /\  0h  e.  ~H  /\  1  e.  ZZ )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) 0h )
10518, 100, 102, 104syl3anc 1187 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) 0h )
1069, 99, 105lmmo 16940 . . . . 5  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( T `
 x )  -h  x )  =  0h )
10719ffvelrni 5516 . . . . . . 7  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
10892, 107syl 17 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  e.  ~H )
109 hvsubeq0 21477 . . . . . 6  |-  ( ( ( T `  x
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( ( T `
 x )  -h  x )  =  0h  <->  ( T `  x )  =  x ) )
110108, 92, 109syl2anc 645 . . . . 5  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( ( T `  x )  -h  x )  =  0h  <->  ( T `  x )  =  x ) )
111106, 110mpbid 203 . . . 4  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  =  x )
112 fnfvelrn 5514 . . . . 5  |-  ( ( T  Fn  ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ran  T
)
11351, 92, 112sylancr 647 . . . 4  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  e.  ran  T )
114111, 113eqeltrrd 2328 . . 3  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T )
115114gen2 1541 . 2  |-  A. f A. x ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T )
116 isch2 21633 . 2  |-  ( ran 
T  e.  CH  <->  ( ran  T  e.  SH  /\  A. f A. x ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T ) ) )
1174, 115, 116mpbir2an 891 1  |-  ran  T  e.  CH
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621   A.wral 2509    C_ wss 3078   {csn 3544   <.cop 3547   class class class wbr 3920    e. cmpt 3974    X. cxp 4578   ran crn 4581    |` cres 4582    o. ccom 4584    Fn wfn 4587   -->wf 4588   ` cfv 4592  (class class class)co 5710    ^m cmap 6658   1c1 8618   NNcn 9626   ZZcz 9903   * Metcxmt 16201   MetOpencmopn 16204  TopOnctopon 16464    Cn ccn 16786   ~~> tclm 16788   Hauscha 16868    tX ctx 17087   NrmCVeccnv 20970   ~Hchil 21329    +h cva 21330    .h csm 21331   normhcno 21333   0hc0v 21334    -h cmv 21335    ~~>v chli 21337   SHcsh 21338   CHcch 21339   ConOpccop 21356   LinOpclo 21357   BndLinOpcbo 21358   HrmOpcho 21360
This theorem is referenced by:  hmopidmpji  22562  hmopidmch  22563
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945  ax-dc 7956  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494  ax-hcompl 21611
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-cn 16789  df-cnp 16790  df-lm 16791  df-t1 16874  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-fcls 17468  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-cfil 18513  df-cau 18514  df-cmet 18515  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-subgo 20799  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ims 20987  df-dip 21104  df-ssp 21128  df-lno 21152  df-nmoo 21153  df-blo 21154  df-0o 21155  df-ph 21221  df-cbn 21272  df-hlo 21295  df-hnorm 21378  df-hba 21379  df-hvsub 21381  df-hlim 21382  df-hcau 21383  df-sh 21616  df-ch 21631  df-oc 21661  df-ch0 21662  df-shs 21717  df-pjh 21804  df-h0op 22158  df-nmop 22249  df-cnop 22250  df-lnop 22251  df-bdop 22252  df-unop 22253  df-hmop 22254
  Copyright terms: Public domain W3C validator