HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmchi Unicode version

Theorem hmopidmchi 23611
Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of [AkhiezerGlazman] p. 64. (Contributed by NM, 21-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1  |-  T  e. 
HrmOp
hmopidmch.2  |-  ( T  o.  T )  =  T
Assertion
Ref Expression
hmopidmchi  |-  ran  T  e.  CH

Proof of Theorem hmopidmchi
Dummy variables  f 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . 4  |-  T  e. 
HrmOp
2 hmoplin 23402 . . . 4  |-  ( T  e.  HrmOp  ->  T  e.  LinOp
)
31, 2ax-mp 8 . . 3  |-  T  e. 
LinOp
43rnelshi 23519 . 2  |-  ran  T  e.  SH
5 eqid 2408 . . . . . . . 8  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
65hilxmet 22654 . . . . . . 7  |-  ( normh  o. 
-h  )  e.  ( * Met `  ~H )
7 eqid 2408 . . . . . . . 8  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
87methaus 18507 . . . . . . 7  |-  ( (
normh  o.  -h  )  e.  ( * Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  Haus )
96, 8mp1i 12 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  Haus )
10 eqid 2408 . . . . . . . . . . . 12  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
1110, 5hhims 22631 . . . . . . . . . . . 12  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
1210, 11, 7hhlm 22658 . . . . . . . . . . 11  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
13 resss 5133 . . . . . . . . . . 11  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
1412, 13eqsstri 3342 . . . . . . . . . 10  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
1514ssbri 4218 . . . . . . . . 9  |-  ( f 
~~>v  x  ->  f ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) ) x )
1615adantl 453 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) x )
177mopntopon 18426 . . . . . . . . . 10  |-  ( (
normh  o.  -h  )  e.  ( * Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  (TopOn `  ~H ) )
186, 17mp1i 12 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  (TopOn `  ~H ) )
193lnopfi 23429 . . . . . . . . . . . 12  |-  T : ~H
--> ~H
2019a1i 11 . . . . . . . . . . 11  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  T : ~H --> ~H )
2120feqmptd 5742 . . . . . . . . . 10  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  T  =  ( y  e.  ~H  |->  ( T `  y ) ) )
22 hmopbdoptHIL 23448 . . . . . . . . . . . . 13  |-  ( T  e.  HrmOp  ->  T  e.  BndLinOp )
231, 22ax-mp 8 . . . . . . . . . . . 12  |-  T  e.  BndLinOp
24 lnopcnbd 23496 . . . . . . . . . . . . 13  |-  ( T  e.  LinOp  ->  ( T  e.  ConOp 
<->  T  e.  BndLinOp ) )
253, 24ax-mp 8 . . . . . . . . . . . 12  |-  ( T  e.  ConOp 
<->  T  e.  BndLinOp )
2623, 25mpbir 201 . . . . . . . . . . 11  |-  T  e. 
ConOp
275, 7hhcno 23364 . . . . . . . . . . 11  |-  ConOp  =  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( MetOpen `  ( normh  o. 
-h  ) ) )
2826, 27eleqtri 2480 . . . . . . . . . 10  |-  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) )
2921, 28syl6eqelr 2497 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  ( T `  y ) )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3018cnmptid 17650 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  y )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3110hhnv 22624 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
3210hhvs 22629 . . . . . . . . . . 11  |-  -h  =  ( -v `  <. <.  +h  ,  .h  >. ,  normh >. )
3311, 7, 32vmcn 22152 . . . . . . . . . 10  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  -h  e.  ( ( ( MetOpen `  ( normh  o.  -h  )
)  tX  ( MetOpen `  ( normh  o.  -h  )
) )  Cn  ( MetOpen
`  ( normh  o.  -h  ) ) ) )
3431, 33mp1i 12 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  -h  e.  (
( ( MetOpen `  ( normh  o.  -h  ) ) 
tX  ( MetOpen `  ( normh  o.  -h  ) ) )  Cn  ( MetOpen `  ( normh  o.  -h  )
) ) )
3518, 29, 30, 34cnmpt12f 17655 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3616, 35lmcn 17327 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) ) `  x ) )
37 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f : NN --> ran  T )
384shssii 22672 . . . . . . . . . . . . . 14  |-  ran  T  C_ 
~H
39 fss 5562 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  ran  T  C_  ~H )  ->  f : NN --> ~H )
4037, 38, 39sylancl 644 . . . . . . . . . . . . 13  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f : NN --> ~H )
4140ffvelrnda 5833 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
f `  k )  e.  ~H )
42 fveq2 5691 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  ( T `  y )  =  ( T `  ( f `  k
) ) )
43 id 20 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  y  =  ( f `  k ) )
4442, 43oveq12d 6062 . . . . . . . . . . . . 13  |-  ( y  =  ( f `  k )  ->  (
( T `  y
)  -h  y )  =  ( ( T `
 ( f `  k ) )  -h  ( f `  k
) ) )
45 eqid 2408 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  =  ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )
46 ovex 6069 . . . . . . . . . . . . 13  |-  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) )  e. 
_V
4744, 45, 46fvmpt 5769 . . . . . . . . . . . 12  |-  ( ( f `  k )  e.  ~H  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) ) )
4841, 47syl 16 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) ) )
49 ffn 5554 . . . . . . . . . . . . . . . 16  |-  ( T : ~H --> ~H  ->  T  Fn  ~H )
5019, 49ax-mp 8 . . . . . . . . . . . . . . 15  |-  T  Fn  ~H
51 fveq2 5691 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( T `  x )  ->  ( T `  y )  =  ( T `  ( T `  x ) ) )
52 id 20 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( T `  x )  ->  y  =  ( T `  x ) )
5351, 52eqeq12d 2422 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( T `  x )  ->  (
( T `  y
)  =  y  <->  ( T `  ( T `  x
) )  =  ( T `  x ) ) )
5453ralrn 5836 . . . . . . . . . . . . . . 15  |-  ( T  Fn  ~H  ->  ( A. y  e.  ran  T ( T `  y
)  =  y  <->  A. x  e.  ~H  ( T `  ( T `  x ) )  =  ( T `
 x ) ) )
5550, 54ax-mp 8 . . . . . . . . . . . . . 14  |-  ( A. y  e.  ran  T ( T `  y )  =  y  <->  A. x  e.  ~H  ( T `  ( T `  x ) )  =  ( T `
 x ) )
56 hmopidmch.2 . . . . . . . . . . . . . . . 16  |-  ( T  o.  T )  =  T
5756fveq1i 5692 . . . . . . . . . . . . . . 15  |-  ( ( T  o.  T ) `
 x )  =  ( T `  x
)
5819, 19hocoi 23224 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  (
( T  o.  T
) `  x )  =  ( T `  ( T `  x ) ) )
5957, 58syl5reqr 2455 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( T `  ( T `  x ) )  =  ( T `  x
) )
6055, 59mprgbir 2740 . . . . . . . . . . . . 13  |-  A. y  e.  ran  T ( T `
 y )  =  y
61 ffvelrn 5831 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  k  e.  NN )  ->  ( f `  k )  e.  ran  T )
6261adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
f `  k )  e.  ran  T )
6342, 43eqeq12d 2422 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  (
( T `  y
)  =  y  <->  ( T `  ( f `  k
) )  =  ( f `  k ) ) )
6463rspccv 3013 . . . . . . . . . . . . 13  |-  ( A. y  e.  ran  T ( T `  y )  =  y  ->  (
( f `  k
)  e.  ran  T  ->  ( T `  (
f `  k )
)  =  ( f `
 k ) ) )
6560, 62, 64mpsyl 61 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  ( T `  ( f `  k ) )  =  ( f `  k
) )
6665, 41eqeltrd 2482 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  ( T `  ( f `  k ) )  e. 
~H )
67 hvsubeq0 22527 . . . . . . . . . . . . 13  |-  ( ( ( T `  (
f `  k )
)  e.  ~H  /\  ( f `  k
)  e.  ~H )  ->  ( ( ( T `
 ( f `  k ) )  -h  ( f `  k
) )  =  0h  <->  ( T `  ( f `
 k ) )  =  ( f `  k ) ) )
6866, 41, 67syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( T `  ( f `  k
) )  -h  (
f `  k )
)  =  0h  <->  ( T `  ( f `  k
) )  =  ( f `  k ) ) )
6965, 68mpbird 224 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( T `  (
f `  k )
)  -h  ( f `
 k ) )  =  0h )
7048, 69eqtrd 2440 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  0h )
71 fvco3 5763 . . . . . . . . . . 11  |-  ( ( f : NN --> ran  T  /\  k  e.  NN )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) ) `  ( f `  k
) ) )
7271adantlr 696 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f ) `  k
)  =  ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) ) `  ( f `
 k ) ) )
73 ax-hv0cl 22463 . . . . . . . . . . . . 13  |-  0h  e.  ~H
7473elexi 2929 . . . . . . . . . . . 12  |-  0h  e.  _V
7574fvconst2 5910 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( NN  X.  { 0h } ) `  k
)  =  0h )
7675adantl 453 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( NN  X.  { 0h } ) `  k
)  =  0h )
7770, 72, 763eqtr4d 2450 . . . . . . . . 9  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f ) `  k
)  =  ( ( NN  X.  { 0h } ) `  k
) )
7877ralrimiva 2753 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f ) `  k )  =  ( ( NN  X.  { 0h } ) `  k
) )
79 ovex 6069 . . . . . . . . . . 11  |-  ( ( T `  y )  -h  y )  e. 
_V
8079, 45fnmpti 5536 . . . . . . . . . 10  |-  ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  Fn  ~H
81 fnfco 5572 . . . . . . . . . 10  |-  ( ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y
) )  Fn  ~H  /\  f : NN --> ~H )  ->  ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f )  Fn  NN )
8280, 40, 81sylancr 645 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f )  Fn  NN )
8374fconst 5592 . . . . . . . . . 10  |-  ( NN 
X.  { 0h }
) : NN --> { 0h }
84 ffn 5554 . . . . . . . . . 10  |-  ( ( NN  X.  { 0h } ) : NN --> { 0h }  ->  ( NN  X.  { 0h }
)  Fn  NN )
8583, 84ax-mp 8 . . . . . . . . 9  |-  ( NN 
X.  { 0h }
)  Fn  NN
86 eqfnfv 5790 . . . . . . . . 9  |-  ( ( ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f )  Fn  NN  /\  ( NN  X.  { 0h } )  Fn  NN )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } )  <->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( NN  X.  { 0h } ) `  k ) ) )
8782, 85, 86sylancl 644 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } )  <->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( NN  X.  { 0h } ) `  k ) ) )
8878, 87mpbird 224 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } ) )
89 vex 2923 . . . . . . . . . 10  |-  x  e. 
_V
9089hlimveci 22649 . . . . . . . . 9  |-  ( f 
~~>v  x  ->  x  e.  ~H )
9190adantl 453 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ~H )
92 fveq2 5691 . . . . . . . . . 10  |-  ( y  =  x  ->  ( T `  y )  =  ( T `  x ) )
93 id 20 . . . . . . . . . 10  |-  ( y  =  x  ->  y  =  x )
9492, 93oveq12d 6062 . . . . . . . . 9  |-  ( y  =  x  ->  (
( T `  y
)  -h  y )  =  ( ( T `
 x )  -h  x ) )
95 ovex 6069 . . . . . . . . 9  |-  ( ( T `  x )  -h  x )  e. 
_V
9694, 45, 95fvmpt 5769 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  x
)  =  ( ( T `  x )  -h  x ) )
9791, 96syl 16 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) ) `
 x )  =  ( ( T `  x )  -h  x
) )
9836, 88, 973brtr3d 4205 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) ( ( T `  x )  -h  x ) )
9973a1i 11 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  0h  e.  ~H )
100 1z 10271 . . . . . . . 8  |-  1  e.  ZZ
101100a1i 11 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  1  e.  ZZ )
102 nnuz 10481 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
103102lmconst 17283 . . . . . . 7  |-  ( ( ( MetOpen `  ( normh  o. 
-h  ) )  e.  (TopOn `  ~H )  /\  0h  e.  ~H  /\  1  e.  ZZ )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) 0h )
10418, 99, 101, 103syl3anc 1184 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) 0h )
1059, 98, 104lmmo 17402 . . . . 5  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( T `
 x )  -h  x )  =  0h )
10619ffvelrni 5832 . . . . . . 7  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
10791, 106syl 16 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  e.  ~H )
108 hvsubeq0 22527 . . . . . 6  |-  ( ( ( T `  x
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( ( T `
 x )  -h  x )  =  0h  <->  ( T `  x )  =  x ) )
109107, 91, 108syl2anc 643 . . . . 5  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( ( T `  x )  -h  x )  =  0h  <->  ( T `  x )  =  x ) )
110105, 109mpbid 202 . . . 4  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  =  x )
111 fnfvelrn 5830 . . . . 5  |-  ( ( T  Fn  ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ran  T
)
11250, 91, 111sylancr 645 . . . 4  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  e.  ran  T )
113110, 112eqeltrrd 2483 . . 3  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T )
114113gen2 1553 . 2  |-  A. f A. x ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T )
115 isch2 22683 . 2  |-  ( ran 
T  e.  CH  <->  ( ran  T  e.  SH  /\  A. f A. x ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T ) ) )
1164, 114, 115mpbir2an 887 1  |-  ran  T  e.  CH
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1721   A.wral 2670    C_ wss 3284   {csn 3778   <.cop 3781   class class class wbr 4176    e. cmpt 4230    X. cxp 4839   ran crn 4842    |` cres 4843    o. ccom 4845    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6044    ^m cmap 6981   1c1 8951   NNcn 9960   ZZcz 10242   * Metcxmt 16645   MetOpencmopn 16650  TopOnctopon 16918    Cn ccn 17246   ~~> tclm 17248   Hauscha 17330    tX ctx 17549   NrmCVeccnv 22020   ~Hchil 22379    +h cva 22380    .h csm 22381   normhcno 22383   0hc0v 22384    -h cmv 22385    ~~>v chli 22387   SHcsh 22388   CHcch 22389   ConOpccop 22406   LinOpclo 22407   BndLinOpcbo 22408   HrmOpcho 22410
This theorem is referenced by:  hmopidmpji  23612  hmopidmch  23613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cc 8275  ax-dc 8286  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028  ax-addf 9029  ax-mulf 9030  ax-hilex 22459  ax-hfvadd 22460  ax-hvcom 22461  ax-hvass 22462  ax-hv0cl 22463  ax-hvaddid 22464  ax-hfvmul 22465  ax-hvmulid 22466  ax-hvmulass 22467  ax-hvdistr1 22468  ax-hvdistr2 22469  ax-hvmul0 22470  ax-hfi 22538  ax-his1 22541  ax-his2 22542  ax-his3 22543  ax-his4 22544  ax-hcompl 22661
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-of 6268  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-omul 6692  df-er 6868  df-map 6983  df-pm 6984  df-ixp 7027  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-fi 7378  df-sup 7408  df-oi 7439  df-card 7786  df-acn 7789  df-cda 8008  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-10 10026  df-n0 10182  df-z 10243  df-dec 10343  df-uz 10449  df-q 10535  df-rp 10573  df-xneg 10670  df-xadd 10671  df-xmul 10672  df-ioo 10880  df-ico 10882  df-icc 10883  df-fz 11004  df-fzo 11095  df-fl 11161  df-seq 11283  df-exp 11342  df-hash 11578  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-clim 12241  df-rlim 12242  df-sum 12439  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-mulr 13502  df-starv 13503  df-sca 13504  df-vsca 13505  df-tset 13507  df-ple 13508  df-ds 13510  df-unif 13511  df-hom 13512  df-cco 13513  df-rest 13609  df-topn 13610  df-topgen 13626  df-pt 13627  df-prds 13630  df-xrs 13685  df-0g 13686  df-gsum 13687  df-qtop 13692  df-imas 13693  df-xps 13695  df-mre 13770  df-mrc 13771  df-acs 13773  df-mnd 14649  df-submnd 14698  df-mulg 14774  df-cntz 15075  df-cmn 15373  df-psmet 16653  df-xmet 16654  df-met 16655  df-bl 16656  df-mopn 16657  df-fbas 16658  df-fg 16659  df-cnfld 16663  df-top 16922  df-bases 16924  df-topon 16925  df-topsp 16926  df-cld 17042  df-ntr 17043  df-cls 17044  df-nei 17121  df-cn 17249  df-cnp 17250  df-lm 17251  df-t1 17336  df-haus 17337  df-cmp 17408  df-tx 17551  df-hmeo 17744  df-fil 17835  df-fm 17927  df-flim 17928  df-flf 17929  df-fcls 17930  df-xms 18307  df-ms 18308  df-tms 18309  df-cncf 18865  df-cfil 19165  df-cau 19166  df-cmet 19167  df-grpo 21736  df-gid 21737  df-ginv 21738  df-gdiv 21739  df-ablo 21827  df-subgo 21847  df-vc 21982  df-nv 22028  df-va 22031  df-ba 22032  df-sm 22033  df-0v 22034  df-vs 22035  df-nmcv 22036  df-ims 22037  df-dip 22154  df-ssp 22178  df-lno 22202  df-nmoo 22203  df-blo 22204  df-0o 22205  df-ph 22271  df-cbn 22322  df-hlo 22345  df-hnorm 22428  df-hba 22429  df-hvsub 22431  df-hlim 22432  df-hcau 22433  df-sh 22666  df-ch 22681  df-oc 22711  df-ch0 22712  df-shs 22767  df-pjh 22854  df-h0op 23208  df-nmop 23299  df-cnop 23300  df-lnop 23301  df-bdop 23302  df-unop 23303  df-hmop 23304
  Copyright terms: Public domain W3C validator