HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq2 Unicode version

Theorem hoeq2 22336
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  S  =  T
) )
Distinct variable groups:    x, y, S    x, T, y

Proof of Theorem hoeq2
StepHypRef Expression
1 ralcom 2671 . . 3  |-  ( A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) )  <->  A. y  e.  ~H  A. x  e. 
~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) ) )
21a1i 12 . 2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  A. y  e.  ~H  A. x  e.  ~H  (
x  .ih  ( S `  y ) )  =  ( x  .ih  ( T `  y )
) ) )
3 ffvelrn 5562 . . . . 5  |-  ( ( S : ~H --> ~H  /\  y  e.  ~H )  ->  ( S `  y
)  e.  ~H )
4 ffvelrn 5562 . . . . 5  |-  ( ( T : ~H --> ~H  /\  y  e.  ~H )  ->  ( T `  y
)  e.  ~H )
5 hial2eq2 21611 . . . . . 6  |-  ( ( ( S `  y
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( A. x  e. 
~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) )  <->  ( S `  y )  =  ( T `  y ) ) )
6 hial2eq 21610 . . . . . 6  |-  ( ( ( S `  y
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( A. x  e. 
~H  ( ( S `
 y )  .ih  x )  =  ( ( T `  y
)  .ih  x )  <->  ( S `  y )  =  ( T `  y ) ) )
75, 6bitr4d 249 . . . . 5  |-  ( ( ( S `  y
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( A. x  e. 
~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) )  <->  A. x  e.  ~H  ( ( S `
 y )  .ih  x )  =  ( ( T `  y
)  .ih  x )
) )
83, 4, 7syl2an 465 . . . 4  |-  ( ( ( S : ~H --> ~H  /\  y  e.  ~H )  /\  ( T : ~H
--> ~H  /\  y  e. 
~H ) )  -> 
( A. x  e. 
~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) )  <->  A. x  e.  ~H  ( ( S `
 y )  .ih  x )  =  ( ( T `  y
)  .ih  x )
) )
98anandirs 807 . . 3  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  y  e.  ~H )  ->  ( A. x  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  A. x  e.  ~H  ( ( S `  y )  .ih  x
)  =  ( ( T `  y ) 
.ih  x ) ) )
109ralbidva 2530 . 2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. y  e. 
~H  A. x  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  A. y  e.  ~H  A. x  e.  ~H  (
( S `  y
)  .ih  x )  =  ( ( T `
 y )  .ih  x ) ) )
11 hoeq1 22335 . 2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. y  e. 
~H  A. x  e.  ~H  ( ( S `  y )  .ih  x
)  =  ( ( T `  y ) 
.ih  x )  <->  S  =  T ) )
122, 10, 113bitrd 272 1  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  S  =  T
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   -->wf 4634   ` cfv 4638  (class class class)co 5757   ~Hchil 21424    .ih csp 21427
This theorem is referenced by:  adjcoi  22605
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-hfvadd 21505  ax-hvcom 21506  ax-hvass 21507  ax-hv0cl 21508  ax-hvaddid 21509  ax-hfvmul 21510  ax-hvmulid 21511  ax-hvdistr2 21514  ax-hvmul0 21515  ax-hfi 21583  ax-his1 21586  ax-his2 21587  ax-his3 21588  ax-his4 21589
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-2 9737  df-cj 11514  df-re 11515  df-im 11516  df-hvsub 21476
  Copyright terms: Public domain W3C validator