MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htth Unicode version

Theorem htth 21444
Description: Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of [Kreyszig] p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1  |-  X  =  ( BaseSet `  U )
htth.2  |-  P  =  ( .i OLD `  U
)
htth.3  |-  L  =  ( U  LnOp  U
)
htth.4  |-  B  =  ( U  BLnOp  U )
Assertion
Ref Expression
htth  |-  ( ( U  e.  CHil OLD  /\  T  e.  L  /\  A. x  e.  X  A. y  e.  X  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) )  ->  T  e.  B )
Distinct variable groups:    x, y, T    x, U, y    x, X, y
Allowed substitution hints:    B( x, y)    P( x, y)    L( x, y)

Proof of Theorem htth
StepHypRef Expression
1 htth.3 . . . . . . 7  |-  L  =  ( U  LnOp  U
)
2 oveq12 5787 . . . . . . . 8  |-  ( ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  /\  U  =  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  ->  ( U  LnOp  U )  =  ( if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  LnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
32anidms 629 . . . . . . 7  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( U  LnOp  U
)  =  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  LnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) )
41, 3syl5eq 2300 . . . . . 6  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  L  =  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  LnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) )
54eleq2d 2323 . . . . 5  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( T  e.  L  <->  T  e.  ( if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) 
LnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) ) )
6 htth.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
7 fveq2 5444 . . . . . . 7  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( BaseSet `  U )  =  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) )
86, 7syl5eq 2300 . . . . . 6  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  X  =  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) )
9 htth.2 . . . . . . . . . 10  |-  P  =  ( .i OLD `  U
)
10 fveq2 5444 . . . . . . . . . 10  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( .i OLD `  U
)  =  ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) )
119, 10syl5eq 2300 . . . . . . . . 9  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  P  =  ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) )
1211oveqd 5795 . . . . . . . 8  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( x P ( T `  y ) )  =  ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) ) )
1311oveqd 5795 . . . . . . . 8  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( T `  x ) P y )  =  ( ( T `  x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) )
1412, 13eqeq12d 2270 . . . . . . 7  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( x P ( T `  y
) )  =  ( ( T `  x
) P y )  <-> 
( x ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( T `  y ) )  =  ( ( T `  x ) ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) y ) ) )
158, 14raleqbidv 2718 . . . . . 6  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( A. y  e.  X  ( x P ( T `  y
) )  =  ( ( T `  x
) P y )  <->  A. y  e.  ( BaseSet
`  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) ) )
168, 15raleqbidv 2718 . . . . 5  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( A. x  e.  X  A. y  e.  X  ( x P ( T `  y
) )  =  ( ( T `  x
) P y )  <->  A. x  e.  ( BaseSet
`  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) A. y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) ) )
175, 16anbi12d 694 . . . 4  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( T  e.  L  /\  A. x  e.  X  A. y  e.  X  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) )  <->  ( T  e.  ( if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  LnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)  /\  A. x  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) A. y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) ) ) )
18 htth.4 . . . . . 6  |-  B  =  ( U  BLnOp  U )
19 oveq12 5787 . . . . . . 7  |-  ( ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  /\  U  =  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  ->  ( U  BLnOp  U )  =  ( if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
2019anidms 629 . . . . . 6  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( U  BLnOp  U )  =  ( if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) 
BLnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
2118, 20syl5eq 2300 . . . . 5  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  B  =  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  BLnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
2221eleq2d 2323 . . . 4  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( T  e.  B  <->  T  e.  ( if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) 
BLnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) ) )
2317, 22imbi12d 313 . . 3  |-  ( U  =  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( ( T  e.  L  /\  A. x  e.  X  A. y  e.  X  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) )  ->  T  e.  B )  <->  ( ( T  e.  ( if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  LnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)  /\  A. x  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) A. y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) )  ->  T  e.  ( if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) ) ) )
24 eqid 2256 . . . 4  |-  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  =  (
BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)
25 eqid 2256 . . . 4  |-  ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  =  ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )
26 eqid 2256 . . . 4  |-  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  LnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  =  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  LnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )
27 eqid 2256 . . . 4  |-  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  BLnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)  =  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  BLnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)
28 eqid 2256 . . . 4  |-  ( normCV `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)  =  ( normCV `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)
29 eqid 2256 . . . . . 6  |-  <. <.  +  ,  x.  >. ,  abs >.  = 
<. <.  +  ,  x.  >. ,  abs >.
3029cnchl 21441 . . . . 5  |-  <. <.  +  ,  x.  >. ,  abs >.  e. 
CHil OLD
3130elimel 3577 . . . 4  |-  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  e.  CHil OLD
32 simpl 445 . . . 4  |-  ( ( T  e.  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  LnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  /\  A. x  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) A. y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) )  ->  T  e.  ( if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  LnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
33 simpr 449 . . . . 5  |-  ( ( T  e.  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  LnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  /\  A. x  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) A. y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) )  ->  A. x  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) A. y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) )
34 oveq1 5785 . . . . . . 7  |-  ( x  =  u  ->  (
x ( .i OLD `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) ( T `  y ) )  =  ( u ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( T `  y ) ) )
35 fveq2 5444 . . . . . . . 8  |-  ( x  =  u  ->  ( T `  x )  =  ( T `  u ) )
3635oveq1d 5793 . . . . . . 7  |-  ( x  =  u  ->  (
( T `  x
) ( .i OLD `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) y )  =  ( ( T `  u ) ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) y ) )
3734, 36eqeq12d 2270 . . . . . 6  |-  ( x  =  u  ->  (
( x ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( T `  y ) )  =  ( ( T `  x ) ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) y )  <->  ( u
( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 u ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) ) )
38 fveq2 5444 . . . . . . . 8  |-  ( y  =  v  ->  ( T `  y )  =  ( T `  v ) )
3938oveq2d 5794 . . . . . . 7  |-  ( y  =  v  ->  (
u ( .i OLD `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) ( T `  y ) )  =  ( u ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( T `  v ) ) )
40 oveq2 5786 . . . . . . 7  |-  ( y  =  v  ->  (
( T `  u
) ( .i OLD `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) y )  =  ( ( T `  u ) ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) v ) )
4139, 40eqeq12d 2270 . . . . . 6  |-  ( y  =  v  ->  (
( u ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( T `  y ) )  =  ( ( T `  u ) ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) y )  <->  ( u
( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 v ) )  =  ( ( T `
 u ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) v ) ) )
4237, 41cbvral2v 2741 . . . . 5  |-  ( A. x  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) A. y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y )  <->  A. u  e.  ( BaseSet
`  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) A. v  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( u ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 v ) )  =  ( ( T `
 u ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) v ) )
4333, 42sylib 190 . . . 4  |-  ( ( T  e.  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  LnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  /\  A. x  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) A. y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) )  ->  A. u  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) A. v  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( u ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 v ) )  =  ( ( T `
 u ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) v ) )
44 oveq1 5785 . . . . . . 7  |-  ( y  =  w  ->  (
y ( .i OLD `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) ( T `  x ) )  =  ( w ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( T `  x ) ) )
4544cbvmptv 4071 . . . . . 6  |-  ( y  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( y ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 x ) ) )  =  ( w  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( w ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 x ) ) )
46 fveq2 5444 . . . . . . . 8  |-  ( x  =  z  ->  ( T `  x )  =  ( T `  z ) )
4746oveq2d 5794 . . . . . . 7  |-  ( x  =  z  ->  (
w ( .i OLD `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) ( T `  x ) )  =  ( w ( .i
OLD `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( T `  z ) ) )
4847mpteq2dv 4067 . . . . . 6  |-  ( x  =  z  ->  (
w  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( w ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 x ) ) )  =  ( w  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( w ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 z ) ) ) )
4945, 48syl5eq 2300 . . . . 5  |-  ( x  =  z  ->  (
y  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( y ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 x ) ) )  =  ( w  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( w ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 z ) ) ) )
5049cbvmptv 4071 . . . 4  |-  ( x  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( y  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( y ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 x ) ) ) )  =  ( z  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( w  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( w ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 z ) ) ) )
51 fveq2 5444 . . . . . . 7  |-  ( x  =  z  ->  (
( normCV `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  x )  =  ( ( normCV `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  z )
)
5251breq1d 3993 . . . . . 6  |-  ( x  =  z  ->  (
( ( normCV `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) `  x
)  <_  1  <->  ( ( normCV `  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  z )  <_  1 ) )
5352cbvrabv 2756 . . . . 5  |-  { x  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  |  ( (
normCV
`  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  x )  <_  1 }  =  {
z  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |  ( ( normCV `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  z )  <_  1 }
5453imaeq2i 4984 . . . 4  |-  ( ( x  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( y  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |->  ( y ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 x ) ) ) ) " {
x  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |  ( ( normCV `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  x )  <_  1 } )  =  ( ( x  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  |->  ( y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  |->  ( y ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 x ) ) ) ) " {
z  e.  ( BaseSet `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  |  ( ( normCV `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  z )  <_  1 } )
5524, 25, 26, 27, 28, 31, 29, 32, 43, 50, 54htthlem 21443 . . 3  |-  ( ( T  e.  ( if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
)  LnOp  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  /\  A. x  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) A. y  e.  ( BaseSet `  if ( U  e.  CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ( x ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ( T `
 y ) )  =  ( ( T `
 x ) ( .i OLD `  if ( U  e.  CHil OLD
,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) ) y ) )  ->  T  e.  ( if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  if ( U  e. 
CHil OLD ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
5623, 55dedth 3566 . 2  |-  ( U  e.  CHil OLD  ->  ( ( T  e.  L  /\  A. x  e.  X  A. y  e.  X  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) )  ->  T  e.  B )
)
57563impib 1154 1  |-  ( ( U  e.  CHil OLD  /\  T  e.  L  /\  A. x  e.  X  A. y  e.  X  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) )  ->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2516   {crab 2520   ifcif 3525   <.cop 3603   class class class wbr 3983    e. cmpt 4037   "cima 4650   ` cfv 4659  (class class class)co 5778   1c1 8692    + caddc 8694    x. cmul 8696    <_ cle 8822   abscabs 11670   BaseSetcba 21088   normCVcnmcv 21092   .i OLDcdip 21219    LnOp clno 21264    BLnOp cblo 21266   CHil OLDchlo 21410
This theorem is referenced by:  hmopbdoptHIL  22514
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-dc 8026  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-seq 10999  df-exp 11057  df-hash 11290  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-clim 11913  df-sum 12110  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-mulg 14440  df-cntz 14741  df-cmn 15039  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-cn 16905  df-cnp 16906  df-lm 16907  df-t1 16990  df-haus 16991  df-cmp 17062  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-fcls 17584  df-xms 17833  df-ms 17834  df-tms 17835  df-cncf 18330  df-cfil 18629  df-cau 18630  df-cmet 18631  df-grpo 20804  df-gid 20805  df-ginv 20806  df-gdiv 20807  df-ablo 20895  df-vc 21048  df-nv 21094  df-va 21097  df-ba 21098  df-sm 21099  df-0v 21100  df-vs 21101  df-nmcv 21102  df-ims 21103  df-dip 21220  df-lno 21268  df-nmoo 21269  df-blo 21270  df-0o 21271  df-ph 21337  df-cbn 21388  df-hlo 21411
  Copyright terms: Public domain W3C validator